YANG Zhen, WANG Xiaodong, REN Shilei, HUANGFU Lin, ZENG Guanwu, ZHANG Xiaolong, LIN Gang. Enrichment and recovery of zinc from a high zinc blast furnace ash by hydrocyclone method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 100-106. doi: 10.7513/j.issn.1004-7638.2025.03.015
Citation: YANG Zhen, WANG Xiaodong, REN Shilei, HUANGFU Lin, ZENG Guanwu, ZHANG Xiaolong, LIN Gang. Enrichment and recovery of zinc from a high zinc blast furnace ash by hydrocyclone method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 100-106. doi: 10.7513/j.issn.1004-7638.2025.03.015

Enrichment and recovery of zinc from a high zinc blast furnace ash by hydrocyclone method

doi: 10.7513/j.issn.1004-7638.2025.03.015
  • Received Date: 2025-01-13
  • Publish Date: 2025-06-30
  • In order to fully recover and utilize the valuable elements in the blast-furnace ash, the physical and chemical properties of the high-zinc blast-furnace ash produced by the ferro-smelting of vanadium titanium magnetite in a Sichuan iron and steel enterprise were analyzed. The hydrocyclone method was proposed to enrich/recover zinc in the blast-furnace ash. The influences of key parameters such as the feed mass concentration and the diameter of the settling nozzle on the zinc enrichment/recovery effect were investigated. And further, a 200 kg blast furnace ash scale expansion experiment was carried out to verify. The results show that the zinc recovery rate slightly increases with the increase of the feed mass concentration and significantly increases with the decreases of the diameter of the underflow nozzle. The enrichment multiple change trend of zinc grade is opposite to that of the zinc recovery rate. Under the conditions of feeding mass concentration of 15~20 %, diameter of settling nozzle of 14~18 mm and depth recovery of zinc grade 3, the total zinc recovery rate can reach about 97%, the enrichment ratio of zinc in the first stage can reach about 2.4 times, and the grade of zinc in the third stage zinc-poor blast ash can be reduced to about 0.8 %. The expanded test results indicate that the recovery rate of total zinc in blast-furnace ash is 96%, the grade of zinc in the first stage zinc-rich blast-furnace ash can reach 26 %, and the content of zinc in the third stage zinc-poor blast-furnace ash can be reduced to less than 1.0 %, which meets the demand for recycling as iron making raw material. The results of this study are expected to provide data support for the resource utilization of high zinc blast furnace ash.
  • [1]
    ZENG G W. Review on utilization technologies of blast-furnace gas sludge[J]. Environmental Protection of Chemical Industry, 2015,35(3):279-283. (曾冠武. 高炉瓦斯泥综合利用技术述评[J]. 化工环保, 2015,35(3):279-283. doi: 10.3969/j.issn.1006-1878.2015.03.011

    ZENG G W. Review on utilization technologies of blast-furnace gas sludge[J]. Environmental Protection of Chemical Industry, 2015, 35(3): 279-283. doi: 10.3969/j.issn.1006-1878.2015.03.011
    [2]
    WANG Z J, LI Y, TANG J Y, et al. Status and progress of resource recovery and utilization of dust and sludge in the steel industry[J]. Jiangxi Metallurgy, 2023,43(2):87-94. (王钟建, 李岩, 唐境言, 等. 钢铁产业尘泥资源化回收利用现状与进展[J]. 江西冶金, 2023,43(2):87-94.

    WANG Z J, LI Y, TANG J Y, et al. Status and progress of resource recovery and utilization of dust and sludge in the steel industry[J]. Jiangxi Metallurgy, 2023, 43(2): 87-94.
    [3]
    TIAN S L, ZHANG H, CAO Y D, et al. Technology status on treatment and recovery of steel sludge[J]. Yunnan Metallurgy, 2023,52(2):70-75. (田释龙, 张辉, 曹远栋, 等. 钢铁尘泥的处理回收技术现状[J]. 云南冶金, 2023,52(2):70-75. doi: 10.3969/j.issn.1006-0308.2023.02.012

    TIAN S L, ZHANG H, CAO Y D, et al. Technology status on treatment and recovery of steel sludge[J]. Yunnan Metallurgy, 2023, 52(2): 70-75. doi: 10.3969/j.issn.1006-0308.2023.02.012
    [4]
    FENG S, CHEN K. Theoretical research and practice on zinc loading of Hansteel 3200 m3 BF[J]. 2023, 31(3): 5-7, 32. (冯帅, 陈奎. 邯钢3200 m3高炉锌负荷的理论研究与实践[J]. 河南冶金, 2023, 31(3): 5-7, 32.

    FENG S, CHEN K. Theoretical research and practice on zinc loading of Hansteel 3200 m3 BF[J]. 2023, 31(3): 5-7, 32.
    [5]
    SHANG H X, LI H M, WEI R F, et al. Present situation and prospect of iron and steel dust and sludge utilization technology[J]. Iron and Steel, 2019,54(3):9-17. (尚海霞, 李海铭, 魏汝飞, 等. 钢铁尘泥的利用技术现状及展望[J]. 钢铁, 2019,54(3):9-17.

    SHANG H X, LI H M, WEI R F, et al. Present situation and prospect of iron and steel dust and sludge utilization technology[J]. Iron and Steel, 2019, 54(3): 9-17.
    [6]
    WANG Z J, SOHN I. A review on reclamation and reutilization of ironmaking and steelmaking slags[J]. Journal of Sustainable Metallurgy, 2019,5(1):127-140. doi: 10.1007/s40831-018-0201-5
    [7]
    ZHENG H Y, SUN Y, ZHANG S L, et al. Comprehensive utilization of blast furnace gas sludge[J]. China Resources Comprehensive Utilization, 2019,37(7):79-82. (郑虹雨, 孙艳, 张树立, 等. 高炉瓦斯泥的综合利用[J]. 中国资源综合利用, 2019,37(7):79-82. doi: 10.3969/j.issn.1008-9500.2019.07.025

    ZHENG H Y, SUN Y, ZHANG S L, et al. Comprehensive utilization of blast furnace gas sludge[J]. China Resources Comprehensive Utilization, 2019, 37(7): 79-82. doi: 10.3969/j.issn.1008-9500.2019.07.025
    [8]
    FISHER L V, BARRON A. The recycling and reuse of steelmaking slags-a review[J]. Resources Conservation and Recycling, 2019,146:244-255. doi: 10.1016/j.resconrec.2019.03.010
    [9]
    XIAO X, ZHANG S F, SHER F et al. A review on recycling and reutilization of blast furnace dust as a secondary resource[J]. Journal of Sustainable Metallurgy, 2021,7:340-357. doi: 10.1007/s40831-021-00377-9
    [10]
    WANG Z H, GUO J, GUO, H J, et al. Thermodynamic and experimental study of high-temperature roasting of blast furnace gas ash for recovery of metallic zinc and iron[J]. Journal of Iron and Steel Research International, 2024,31:108-120. doi: 10.1007/s42243-023-01021-4
    [11]
    JIN Y L, YAN X M, SUN Y J, et al. Analysis and development of comprehensive utilization of ferrous solid waste combined with Zn in iron and steel enterprises[J]. Shandong Metallurgy, 2022,44(1):5-8,14. (金永龙, 闫献民, 孙宇佳, 等. 钢铁企业含锌固废综合利用技术分析和发展[J]. 山东冶金, 2022,44(1):5-8,14. doi: 10.3969/j.issn.1004-4620.2022.1.sdyj202201002

    JIN Y L, YAN X M, SUN Y J, et al. Analysis and development of comprehensive utilization of ferrous solid waste combined with Zn in iron and steel enterprises[J]. Shandong Metallurgy, 2022, 44(1): 5-8,14. doi: 10.3969/j.issn.1004-4620.2022.1.sdyj202201002
    [12]
    YAN J L, YANG Y H, ZHANG J H. Preconcentration test of zinc-containing substance in ultra-fine blast furnace ash by hydrocyclone[J]. Modern Mining, 2023,39(4):107-109. (闫金磊, 杨义红, 张建辉. 超细粒高炉灰中含锌物的水力旋流器预富集试验[J]. 现代矿业, 2023,39(4):107-109. doi: 10.3969/j.issn.1674-6082.2023.04.028

    YAN J L, YANG Y H, ZHANG J H. Preconcentration test of zinc-containing substance in ultra-fine blast furnace ash by hydrocyclone[J]. Modern Mining, 2023, 39(4): 107-109. doi: 10.3969/j.issn.1674-6082.2023.04.028
    [13]
    SHI S Y, MA A Y, LI G J, et al. Research on comprehensive utilization status of zinc metallurgical solid waste slag[J]. World Nonferrous Metals, 2019,34(13):7-8. (石升友, 马爱元, 李国江, 等. 锌冶金固废渣综合利用现状研究[J]. 世界有色金属, 2019,34(13):7-8. doi: 10.3969/j.issn.1002-5065.2019.13.003

    SHI S Y, MA A Y, LI G J, et al. Research on comprehensive utilization status of zinc metallurgical solid waste slag[J]. World Nonferrous Metals, 2019, 34(13): 7-8. doi: 10.3969/j.issn.1002-5065.2019.13.003
    [14]
    JIN Y L, LIU S Y, QIN G Q, et al. Energy efficiency analysis of typical technologies for disposal ferrous solid waste combined with Zn in steel plants[J]. Energy for Metallurgical Industry, 2022,41(3):18-22. (金永龙, 刘思远, 秦国旗, 等. 典型的处置钢铁企业含锌固废工艺的能效分析[J]. 冶金能源, 2022,41(3):18-22. doi: 10.3969/j.issn.1001-1617.2022.03.004

    JIN Y L, LIU S Y, QIN G Q, et al. Energy efficiency analysis of typical technologies for disposal ferrous solid waste combined with Zn in steel plants[J]. Energy for Metallurgical Industry, 2022, 41(3): 18-22. doi: 10.3969/j.issn.1001-1617.2022.03.004
    [15]
    PENG G J, ZHAO Z H, YAN C M, et al. Optimization study of flotation process for one high silicon low-grade lead-zinc ore in Yunnan[J]. Yunnan Metallurgy, 2024,53(6):44-50. (彭光继, 赵泽辉, 严川明, 等. 云南某高硅低品位铅锌矿浮选工艺优化研究[J]. 云南冶金, 2024,53(6):44-50. doi: 10.3969/j.issn.1006-0308.2024.06.008

    PENG G J, ZHAO Z H, YAN C M, et al. Optimization study of flotation process for one high silicon low-grade lead-zinc ore in Yunnan[J]. Yunnan Metallurgy, 2024, 53(6): 44-50. doi: 10.3969/j.issn.1006-0308.2024.06.008
    [16]
    GAO X R, DUAN X X, ZHENG Y M, et al. Summary of research progress on comprehensive utilization of blast furnace gas ash[J]. Environmental Engineering, 2023,41(S2):609-611, 617. (高熙然, 段学新, 郑艳梅, 等. 高炉瓦斯灰综合利用研究进展综述[J]. 环境工程, 2023,41(S2):609-611, 617.

    GAO X R, DUAN X X, ZHENG Y M, et al. Summary of research progress on comprehensive utilization of blast furnace gas ash[J]. Environmental Engineering, 2023, 41(S2): 609-611, 617.
    [17]
    CHEN W Y, YANG T Q, LI Q Y et al. Characteristic analysis and separation of zinc and iron from zinc containing metallurgical dust[J]. Nonferrous Metals(Extractive Metallurgy), 2023(9):126-136. (陈王媛, 杨通清, 李奇勇, 等. 含锌冶金尘泥特性分析及锌铁分离[J]. 有色金属(冶炼部分), 2023(9):126-136.

    CHEN W Y, YANG T Q, LI Q Y et al. Characteristic analysis and separation of zinc and iron from zinc containing metallurgical dust[J]. Nonferrous Metals(Extractive Metallurgy), 2023(9): 126-136.
    [18]
    CAO K, HU L G, JIA Y M. Application of hydrocyclone separation technology in dezincification engineering of gas scrubbing slime[J]. Metallurgical Power, 2006(5):52-55, 58. (曹克, 胡利光, 贾永铭. 水力旋流分离技术在瓦斯泥脱锌工程中的研究[J]. 冶金动力, 2006(5):52-55, 58. doi: 10.3969/j.issn.1006-6764.2006.05.019

    CAO K, HU L G, JIA Y M. Application of hydrocyclone separation technology in dezincification engineering of gas scrubbing slime[J]. Metallurgical Power, 2006(5): 52-55, 58. doi: 10.3969/j.issn.1006-6764.2006.05.019
    [19]
    WANG W, FU G T, LIU J M, et al. Feasibility study on iron-carbon separation and zinc selection from low zinc blast furnace ash[J]. Modern Mining, 2024,40(2):173-175. (王伟, 付贵泰, 刘金明, 等. 低锌高炉灰选锌与铁炭分离可行性研究[J]. 现代矿业, 2024,40(2):173-175. doi: 10.3969/j.issn.1674-6082.2024.02.043

    WANG W, FU G T, LIU J M, et al. Feasibility study on iron-carbon separation and zinc selection from low zinc blast furnace ash[J]. Modern Mining, 2024, 40(2): 173-175. doi: 10.3969/j.issn.1674-6082.2024.02.043
    [20]
    WANG W, SUN W, WANG J, et al. Research and application of enrichment of fine zinc minerals in ash from blast furnace by hydrocyclone[J]. Modern Mining, 2019,35(4):233-234. (王伟, 孙伟, 王建, 等. 水力旋流器富集高炉灰中的微细粒锌矿物的研究与实践[J]. 现代矿业, 2019,35(4):233-234. doi: 10.3969/j.issn.1674-6082.2019.04.073

    WANG W, SUN W, WANG J, et al. Research and application of enrichment of fine zinc minerals in ash from blast furnace by hydrocyclone[J]. Modern Mining, 2019, 35(4): 233-234. doi: 10.3969/j.issn.1674-6082.2019.04.073
    [21]
    YANG G H, YANG X H, LIU P K, et al. Experimental study on iron collection and zinc decrease from blast furnace sludge with three-product hydrocyclones[J]. Fluid Machinery, 2021,49(10):15-20. (杨光辉, 杨兴华, 刘培坤, 等. 三产品旋流器瓦斯泥集铁降锌试验研究[J]. 流体机械, 2021,49(10):15-20. doi: 10.3969/j.issn.1005-0329.2021.10.003

    YANG G H, YANG X H, LIU P K, et al. Experimental study on iron collection and zinc decrease from blast furnace sludge with three-product hydrocyclones[J]. Fluid Machinery, 2021, 49(10): 15-20. doi: 10.3969/j.issn.1005-0329.2021.10.003
    [22]
    ZHANG Z C, ZHANG Y K, LIU P K, et al. The influence of straight pipe length of the bottom outlet on the separation performance of the hydrocyclone[J]. Metal Mine, 2021(11):158-164. (张智宸, 张悦刊, 刘培坤, 等. 旋流器底流口直管段长度对分离性能的影响研究[J]. 金属矿山, 2021(11):158-164.

    ZHANG Z C, ZHANG Y K, LIU P K, et al. The influence of straight pipe length of the bottom outlet on the separation performance of the hydrocyclone[J]. Metal Mine, 2021(11): 158-164.
    [23]
    PAN M, WU H, WNAG Q, et al. Application research on improving classification efficiency of hydrocyclone in Zhangzhuang mine[J]. Modern Mining, 2021,37(7):160-161, 164. (潘猛, 吴红, 王琦, 等. 张庄矿提高水力旋流器分级效率应用研究[J]. 现代矿业, 2021,37(7):160-161, 164. doi: 10.3969/j.issn.1674-6082.2021.07.042

    PAN M, WU H, WNAG Q, et al. Application research on improving classification efficiency of hydrocyclone in Zhangzhuang mine[J]. Modern Mining, 2021, 37(7): 160-161, 164. doi: 10.3969/j.issn.1674-6082.2021.07.042
    [24]
    LUO Y L. Experimental study on grading filtration of fine-grained mineral slurry in a concentrator[J]. Modern Mining, 2024,40(11):150-152, 156. (罗渊林. 某选矿厂细粒级矿泥分级过滤试验研究[J]. 现代矿业, 2024,40(11):150-152, 156. doi: 10.3969/j.issn.1674-6082.2024.11.033

    LUO Y L. Experimental study on grading filtration of fine-grained mineral slurry in a concentrator[J]. Modern Mining, 2024, 40(11): 150-152, 156. doi: 10.3969/j.issn.1674-6082.2024.11.033
  • Relative Articles

    [1]Wang Jie, Li Gen, Liang Yuehua, Gan Bin, Zhao Yi. Experimental study on the prediction model of carbonization depth in high Ti-bearing blast furnace slag concrete[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 101-106. doi: 10.7513/j.issn.1004-7638.2022.02.016
    [2]Zhu Jun, Liu Danyang, Yang Miao, Chen Yipeng, Wang Bin, Zhao Lv, Kang Min. Direct leaching of spent catalyst from acid production from flue gas[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 10-14. doi: 10.7513/j.issn.1004-7638.2021.02.003
    [3]Wang Haibo, Li Li, Luo Zhiqiang, Wu Xiaoping, Liu Yong. Research on Slurry Viscosity of Zinc Salt Initial Titanium Dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2019, 40(2): 61-65. doi: 10.7513/j.issn.1004-7638.2019.02.010
    [4]Hu Houqin, Zhang Hongying. Experimental Study on the Recovering Ilmenite from Iron Tailings in Panzhihua-Xichang Area by High Gradient Magnetic Separator with a Horizontal Magnetic System[J]. IRON STEEL VANADIUM TITANIUM, 2019, 40(6): 73-76,128. doi: 10.7513/j.issn.1004-7638.2019.06.015
    [5]Wang Zibing, Liu Yue, Zhang Yuzhu, Xing Hongwei, Wang Lili, Liu Zhenchao. Experimental Study on Heat Recovery of the Process of Gas Blowing for Blast Furnace Slag[J]. IRON STEEL VANADIUM TITANIUM, 2018, 39(4): 93-98. doi: 10.7513/j.issn.1004-7638.2018.04.016
    [6]Huang Ping, Zhang Yuan. Experiment Study on Ammonia System Leaching Zinc from Blast Furnace Dust[J]. IRON STEEL VANADIUM TITANIUM, 2018, 39(4): 99-103. doi: 10.7513/j.issn.1004-7638.2018.04.017
    [7]Zhu Kuisong, Liu Songli, Gou Shuyun, Zhou Lanhua, Sun Yan. Mechanism of Recovering Iron and Zinc from BF Gas Slime by Self-reduction[J]. IRON STEEL VANADIUM TITANIUM, 2016, 37(1): 79-84,89. doi: 10.7513/j.issn.1004-7638.2016.01.016
    [8]Deng Yongchun, Jia Suqi, Wu Shengli, Jiang Yinju. Removal of the Harmful Elements and Iron Recovery from the Blast Furnace Gas Ash by Chloridizing Roasting[J]. IRON STEEL VANADIUM TITANIUM, 2015, 36(6): 51-56. doi: 10.7513/j.issn.1004-7638.2015.06.010
    [9]Liu Hui, Wang Jia, Liang Jian, Zhou Li. Hydraulics Simulated Experimental Study on a Two Strand Tundish at Different Flow Rate[J]. IRON STEEL VANADIUM TITANIUM, 2015, 36(3): 93-98. doi: 10.7513/j.issn.1004-7638.2015.03.019
    [10]Ju Jiantao, Dang Yaojun, Zhao Zhongyu. Experimental Study on Dezincification of BF Dust and Converter Sludge by Reduction[J]. IRON STEEL VANADIUM TITANIUM, 2013, 34(4): 36-40,46. doi: 10.7513/j.issn.1004-7638.2013.04.007
    [11]XIAO Xiang-hong, LIU Ming-yang, LUO Fa-ying. AN INVESTIGATION ON MELTING FERROTITANIUM PROCESS IN THERMITE METHOD[J]. IRON STEEL VANADIUM TITANIUM, 2001, 22(4): 47-51.
    [12]Zhou Zhiming, Zhang Binghuai, Zhu Zizong. A TEST OF TITANIA SEPARATION FROM HIGH TITANIA BEARING BLAST FURNACE SLAG[J]. IRON STEEL VANADIUM TITANIUM, 1999, 20(4): 35-38.
    [13]Chen Qifu. SCALE-UP EXPERIMENT ON TiO2 AND Sc2O3 RECOVERY FROM B.F.SLAG ATPANGANG[J]. IRON STEEL VANADIUM TITANIUM, 1995, 16(3): 64-68.
    [14]Yang Shaoli, Shen Yishen. EXPERIMENTAL STUDY ON PERFORMANCE OF CYCLONIC DISTRIBUTORS USED FOR BF COAL INJECTION[J]. IRON STEEL VANADIUM TITANIUM, 1995, 16(2): 41-46.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-0702.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.8 %FULLTEXT: 27.8 %META: 55.6 %META: 55.6 %PDF: 16.7 %PDF: 16.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (9) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return