Yu Yongmei, Li Zhiguo, Lou Guodong, Jing Yi. Study on mechanical properties of resistance spot welded joints with single pulse unequal thickness of 22MnB5/DP590[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 181-188. doi: 10.7513/j.issn.1004-7638.2024.04.026
Citation: Yu Yongmei, Li Zhiguo, Lou Guodong, Jing Yi. Study on mechanical properties of resistance spot welded joints with single pulse unequal thickness of 22MnB5/DP590[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 181-188. doi: 10.7513/j.issn.1004-7638.2024.04.026

Study on mechanical properties of resistance spot welded joints with single pulse unequal thickness of 22MnB5/DP590

doi: 10.7513/j.issn.1004-7638.2024.04.026
  • Received Date: 2023-05-23
  • Publish Date: 2024-08-30
  • In this paper, the single pulse resistance spot welding technology was used to study the section characteristics and tensile properties of 22MnB5/DP590 spot welding joints with varying thickness section under different welding current and welding time, and the variation of microhardness of spot welding joints was analyzed. The results show that the welding current has little effect on the penetration and core thickness of the base metal. With the increase of welding current, the weld core moves towards the thicker DP590 side, and both weld diameter and tensile shear of the joint increase. Compared with the welding current, prolonging welding time has significant effect on the indentation rate and core offset of the joint. With the increase of welding time, the penetration of the base metal and the thickness of the molten core decrease. The diameter of the molten core decreases when the welding time is 1000 ms, but the tensile shear keeps increasing. The microhardness values of spot welded joints from high to low are as follows: 22MnB5 side heat affected zone → molten core zone →DP590 side heat affected zone. Under the action of tensile shear, the joint tensile fracture modes include interface fracture, partial interface fracture and core pulling out fracture. It is concluded that given 3.8 kN of welding force the optimum welding conditions for varying section of DP590/22MnB5 are 8.5 kA of welding current and 160 ms of welding time.
  • [1]
    Senuma T. Physical metallurgy of modern high strength steel sheets[J]. ISIJ International, 2001,41(6):520-532. doi: 10.2355/isijinternational.41.520
    [2]
    Dean T A.一种新工艺: 热冲压和冷模淬火[C]//第十届全国塑性工程学术年会、第三届国际塑性加工先进技术研讨会.南昌: 中国机械工程学会塑性工程分会, 2007:719-727.

    Dean T A. A novel process: hot stamping and cold die quenching[C]//The 10th National Plastic Engineering Academic Annual Conference and 3rd International Symposium on Advanced Technology for Plasticity. Nanchang: China Society for Technology of Plasticity, 2007: 719-727.
    [3]
    Çavuşoğlu O, Çavuşoğlu O, Yılmazoğlu A G, et al. Microstructural features and mechanical properties of 22MnB5 hot stamping steel in different heat treatment conditions[J]. Journal of Materials Research and Technology, 2020,9(5):10901-10908. doi: 10.1016/j.jmrt.2020.07.043
    [4]
    梁雪波. 热成形硼钢22MnB5与镀锌钢HSLA350焊点宏/微观结构、力学性能及相关机理研究[D]. 重庆: 重庆大学, 2016.

    Liang Xuebo. Study on macro/microstructure, mechanical properties and related mechanism of hot stamping boron steel 22MnB5 and galvanized steel HSLA350 RSW joint[D]. Chongqing: Chongqing University, 2016.
    [5]
    Sun Haoran, Miao Tieling. Traditional high strength steel and advanced high strength steel for automobile[J]. Metal World, 2010,(6):24-27. (孙浩然, 苗铁岭. 汽车用传统高强钢和先进高强钢[J]. 金属世界, 2010,(6):24-27. doi: 10.3969/j.issn.1000-6826.2010.06.010

    Sun Haoran, Miao Tieling. Traditional High Strength Steel and Advanced High Strength Steel for Automobile [J]. Metal World, 2010(06): 24-27+5. doi: 10.3969/j.issn.1000-6826.2010.06.010
    [6]
    Yuan Xinjian, Li Ci, Chen Jianbin, et al. Resistance spot welding of dissimilar DP600 and DC54D steels[J]. Journal of Materials Processing Technology, 2017,239:31-41. doi: 10.1016/j.jmatprotec.2016.08.012
    [7]
    Wang Bin, Hua Lin, Wang Xiaokai, et al. Effects of electrode tip morphology on resistance spot welding quality of DP590 dual-phase steel[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(12):1-10.
    [8]
    Gao Xu, Wang Gengzhu. Study on fusion process of heterogeneous materials Fe-Ni spot welding[J]. Hot Working Technology, 2004,(8):42-44. (高旭, 王更柱. 异质材料铁-镍点焊熔合过程的研究[J]. 热加工工艺, 2004,(8):42-44. doi: 10.14158/j.cnki.1001-3814.2004.08.019

    Gao Xu, Wang Gengzhu. Study on Fusion Process of Heterogeneous Materials Fe-Ni Spot Welding [J]. Hot Working Technology, 2004(8): 42-44. (in Chinese) doi: 10.14158/j.cnki.1001-3814.2004.08.019
    [9]
    顾萌. DP780/HC660不等厚异质高强钢电阻点焊接头组织与性能的研究[D]. 长春: 吉林大学, 2015.

    Gu Meng. Study on microstructure and properties of resistance spot welded joint of DP780/HC660 heterogeneous high strength steel with unequal thickness[D]. Changchun: Jilin University, 2015.
    [10]
    Wang Xiaole, Zhu Zhengqiang, Zhao Xiang. Microstructure and properties of resistance spot welded joints of unequal thickness high strength steel H220YD/DP590GA[J]. Journal of Shanghai Jiao Tong University, 2016,50(12):1889-1892. (王小乐, 朱政强, 赵翔. 不等厚高强度钢H220YD/DP590GA电阻点焊接头的组织和性能[J]. 上海交通大学学报, 2016,50(12):1889-1892.

    Wang Xiaole, Zhu Zhengqiang, Zhao Xiang. Microstructure and Properties of Resistance Spot Welded Joints of Unequal Thickness High Strength Steel H220 YD/DP590 GA [J]. Journal of Shanghai Jiao Tong University, 2016, 50(12): 1889-1892.
    [11]
    Thibaut Huin, Sylvain Dancette, Damien Fabrègue, et al. Investigation of the failure of advanced high strength steels heterogeneous spot welds[J]. Metals, 2016, 6(5):111.
    [12]
    Jung G S, Lee K Y, Lee J B, et al. Spot weldability of TRIP assisted steels with high carbon and aluminium contents[J]. Science and Technology of Welding and Joining, 2012,17(2):92-98. doi: 10.1179/1362171811Y.0000000081
    [13]
    Vignesh Krishnan, Elayaperumal Ayyasamy, Velmurugan Paramasivam. Influence of resistance spot welding process parameters on dissimilar austenitic and duplex stainless steel welded joints[J]. Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering, 2021,235(1):12-23.
    [14]
    Zhao Dawei, Wang Yuanxun, Sheng Suning, et al. Multi-objective optimal design of small scale resistance spotwelding process with principal component analysis and response surface methodology[J]. Journal of Intelligent Manufacturing, 2013,26(1):1-14.
    [15]
    Qiu Ranfeng, Li Jiuyong, Zhang Zhenwei, et al. Core migration in resistance spot welding of non-equal thickness stainless steel plate[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2017,38(6):7-10. (邱然锋, 李久勇, 张振伟, 等. 非等厚不锈钢板电阻点焊的熔核偏移[J]. 河南科技大学学报(自然科学版), 2017,38(6):7-10. doi: 10.15926/j.cnki.issn1672-6871.2017.06.002

    Qiu Ranfeng, Li Jiuyong, Zhang Zhenwei, et al. Core Migration in Resistance Spot Welding of Non-equal Thickness Stainless Steel Plate [J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2017, 38(06): 7-10+3. doi: 10.15926/j.cnki.issn1672-6871.2017.06.002
    [16]
    王蕾. 铝/钢异种金属电阻点焊焊接性及接头疲劳行为的研究[D]. 长春: 吉林大学, 2022.

    Wang Lei. Research on weldability and joint fatigue behavior of aluminum/steel dissimilar metal resistance spot welding[D]. Changchun: Jilin University, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (95) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return