Citation: | Cheng Yang, Li Xiaobing, Gao Ming, Liu Kui. Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021 |
[1] |
Liu Zhen, Ma Jin, Chen Derun. Local hear treatment of defective casting of 2.25Cr-1Mo alloy steel after rewelding[J]. Foundry Engineering, 2016,5:36-38. (刘振, 马进, 陈得润. 有缺陷的2.25Cr-1Mo合金钢铸件返修焊接后的局部热处理[J]. 铸造工程, 2016,5:36-38. doi: 10.3969/j.issn.1673-3320.2016.05.016
Liu Zhen, Ma Jin, Chen Derun. Local hear treatment of defective casting of 2.25Cr-1Mo alloy steel after rewelding[J]. Foundry Engineering, 2016, 5: 36-38. doi: 10.3969/j.issn.1673-3320.2016.05.016
|
[2] |
Yoshino K, McMahon C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metallurgical Transactions, 1974,5(2):363. doi: 10.1007/BF02644103
|
[3] |
Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels reviews[J]. Iron and Steel, 2021, 56(3): 1-10. (李小兵, 董鑫, 邢炜伟, 等. 合金元素对Cr-Mo钢第二类回火脆性影响研究综述[J]. 钢铁, 2021, 56(3): 1-10.
Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels reviews[J]. Iron and Steel, 2021, 56(3): 1-10.
|
[4] |
Qu Z, McMahon C J. The effects of tempering reactions on temper embrittlement of alloy steels[J]. Metall. Trans. A, 1983, 14: 1101-1108.
|
[5] |
McMahon C J, Cianelli A K, Feng H C. The influence of Mo on P-induced temper embrittlement in Ni-Cr steel[J]. Metall. Trans. A, 1977, 8(7): 1055-1057.
|
[6] |
Geng W T, Freeman A J, Olson G B. Influence of alloying additions on the impurity induced grain boundary embrittlement[J]. Solid State Commun., 2001,119:585. doi: 10.1016/S0038-1098(01)00298-8
|
[7] |
Zhang Dongbin, Wu Chengjian. Behavior of cerium in grain boundary segregation and its influence on equilibrium segregation of phosphorus at grain boundary in α-iron[J]. Acta Metallurgical Sinica, 1988,24(2):100. (张东彬, 吴承建. Ce在α-Fe晶界的偏聚及其对磷的晶界平衡偏聚的影响[J]. 金属学报, 1988,24(2):100.
Zhang Dongbin, Wu Chengjian. Behavior of cerium in grain boundary segregation and its influence on equilibrium segregation of phosphorus at grain boundary in α-iron[J]. Acta Metallurgical Sinica, 1988, 24(2): 100.
|
[8] |
Wang Haiyang, Gao Xueyun, Ren Huiping, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014,43(11):2739. (王海洋, 高雪云, 任慧平, 等. 稀土Ce在α-Fe中占位倾向与作用机理的密度泛函理论研究[J]. 稀有金属材料与工程, 2014,43(11):2739.
Wang Haiyang, Gao Xueyun, Ren Huiping, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014, 43(11): 2739.
|
[9] |
Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries[J]. Mater. Sci. Eng. A, 2002, 335: 49-54.
|
[10] |
Jones R B, Younas C M, Heard P J. The effect of microscale distribution of boron on the yield strength of C-Mn steels subjected to neutron irradiation[J]. Acta Metall., 2002, 50(17): 4395-4417.
|
[11] |
Song S H, Guo M A, Shen D D, et al. Effect of boron on the hot ductility of 2.25Cr1Mo steel[J]. Mater. Sci. Eng. A, 2003, 360: 96-100.
|
[12] |
Takahashi J, Kawakami K, Ushioda K, et al. Quantitative analysis of grain boundaries in carbon- and nitrogen added ferritic steels by atom probe tomography[J]. Scripta Materialia, 2012,66:207. doi: 10.1016/j.scriptamat.2011.10.026
|
[13] |
Han J C, Seolb J B, Jafari M, et al. Competitive grain boundary segregation of phosphorus and carbon governs delamination crack in a ferritic steel[J]. Materials Characterization, 2018,145:454. doi: 10.1016/j.matchar.2018.08.060
|
[14] |
Li Xiaobing, Dong Xin, Zhao Pengxiang, et al. Effect of Mg Addition on the temper embrittlement in 2.25Cr-1Mo steel doped with 0.056% P—Mg segregation behavior at grain boundary[J]. Journal of Iron and Steel Research International, 2021, 28(10): 1259-1267.
|
[15] |
Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020,36(5):1-13. (王德永, 屈天鹏. 镁洁净钢新技术发展与展望[J]. 炼钢, 2020,36(5):1-13.
Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020, 36(5): 1-13.
|
[16] |
Li Xiaobing, Min Yi, Liu Chengjun, et al. Effect of Mg addition on the characterization of γ-α phase transformation during continuous cooling in low carbon steel[J]. Steel Research International, 2015,86(12):1530-1540. doi: 10.1002/srin.201400517
|
[17] |
Liu Ying, Liu Jianhua, He Yang, et al. Effect of Mg addition on solidification structure and inclusions in ALSI4130 steel[J]. Steelmaking, 2022,38(6):6-13. (刘颖, 刘建华, 何杨, 等. 镁处理对AISI4130钢组织及夹杂物的影响[J]. 炼钢, 2022,38(6):6-13.
Liu Ying, Liu Jianhua, He Yang, et al. Effect of Mg addition on solidification structure and inclusions in ALSI4130 steel[J]. Steelmaking, 2022, 38(6): 6-13.
|
[18] |
Li Yandong, Xing Weiwei, Li Xiaobing, et al. Effect of Mg addition on microstructure and properties of heat-affected zone in submerged arc welding of a Al-killed low carbon steel[j]. Materials, 2021, 14(9): 2445.
|
[19] |
Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009,49(7):1063-1074. doi: 10.2355/isijinternational.49.1063
|
[20] |
Badu S S, Bhadeshia H K D H. Stress and the acicular ferrite transformation[J]. Materials Science and Engineering A, 1992,156(1):1-9. doi: 10.1016/0921-5093(92)90410-3
|
[21] |
Bor H Y, Chao C G, Ma C Y. The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy[J]. Scr. Mater. , 1997, 38(2): 329-335.
|
[22] |
Sakata K, Suito H. Grain-growth-inhibiting effects of primary inclusion particles of ZrO2 and MgO in Fe-10masspctNi alloy[J]. Metallurgical and Materials Transactions A, 2000,31(4):1213-1223. doi: 10.1007/s11661-000-0117-z
|
[23] |
Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles[J]. Nippon Steel Technical Research, 2004(90):2-6.
|
[24] |
Tian Bo, Sun Ligen, Zhu Liguang. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature[J]. Steelmaking, 2020,36(6):72-77. (田博, 孙立根, 朱立光. 高温条件下Mg处理船体钢钉扎粒子的作用行为[J]. 炼钢, 2020,36(6):72-77.
Tian Bo, Sun Ligen, Zhu Liguang. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature[J]. Steelmaking, 2020, 36(6): 72-77.
|
[25] |
Ji Yongshuai, Li Yang, Jiang Zhouhua, et al. Process of adding magnesium oxide particles in preparation of iron and steel materials[J]. China Metallurgy, 2023,33(2):8-21. (鸡永帅, 李阳, 姜周华, 等. 外加镁系氧化物粒子在钢铁材料制备中的进展[J]. 中国冶金, 2023,33(2):8-21.
Ji Yongshuai, Li Yang, Jiang Zhouhua, et al. Process of adding magnesium oxide particles in preparation of iron and steel materials[J]. China Metallurgy, 2023, 33(2): 8-21.
|
[26] |
Han S Q, Zhao J Q, Wan R D, et al. Effect of microstructure on long-term aging stability of 2.25Cr-1Mo steel[J]. Heat Treatment of Metals, 2020,45(2):11-18.
|