Cheng Yang, Li Xiaobing, Gao Ming, Liu Kui. Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021
Citation: Cheng Yang, Li Xiaobing, Gao Ming, Liu Kui. Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021

Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel

doi: 10.7513/j.issn.1004-7638.2024.04.021
  • Received Date: 2023-12-08
  • Publish Date: 2024-08-30
  • In order to reveal the function of Mg micro-alloying in low micro-alloyed steel, the 2.25Cr1Mo with 15 mm thick steel plates containing different Mg content were prepared with vacuum induction furnace and rolled with double-stick reversible rolling mill. The characteristics of heat-treated microstructure, primary austenite grain, and mechanical properties were investigated with TEM, OM and so on. The results show that after adding Mg for the heat-treated microstructure, the primary austenite grain size is refined and the ferrite volume fraction is increased. When the total oxygen content of 2.25Cr1Mo steel is 0.0003%, Mg will segregate in the carbides, thereby reducing the size of carbides and increasing the amount of these compounds, which increases the pinning effect on austenite grain growth, and then refines the original austenite grain. After adding 0.005% Mg, the impact toughness of 2.25Cr1Mo steel is slightly improved, but the microhardness change is not obvious. The increase of ferrite content in steel after Mg treatment contribute to improving its impact toughness.
  • [1]
    Liu Zhen, Ma Jin, Chen Derun. Local hear treatment of defective casting of 2.25Cr-1Mo alloy steel after rewelding[J]. Foundry Engineering, 2016,5:36-38. (刘振, 马进, 陈得润. 有缺陷的2.25Cr-1Mo合金钢铸件返修焊接后的局部热处理[J]. 铸造工程, 2016,5:36-38. doi: 10.3969/j.issn.1673-3320.2016.05.016

    Liu Zhen, Ma Jin, Chen Derun. Local hear treatment of defective casting of 2.25Cr-1Mo alloy steel after rewelding[J]. Foundry Engineering, 2016, 5: 36-38. doi: 10.3969/j.issn.1673-3320.2016.05.016
    [2]
    Yoshino K, McMahon C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metallurgical Transactions, 1974,5(2):363. doi: 10.1007/BF02644103
    [3]
    Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels reviews[J]. Iron and Steel, 2021, 56(3): 1-10. (李小兵, 董鑫, 邢炜伟, 等. 合金元素对Cr-Mo钢第二类回火脆性影响研究综述[J]. 钢铁, 2021, 56(3): 1-10.

    Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels reviews[J]. Iron and Steel, 2021, 56(3): 1-10.
    [4]
    Qu Z, McMahon C J. The effects of tempering reactions on temper embrittlement of alloy steels[J]. Metall. Trans. A, 1983, 14: 1101-1108.
    [5]
    McMahon C J, Cianelli A K, Feng H C. The influence of Mo on P-induced temper embrittlement in Ni-Cr steel[J]. Metall. Trans. A, 1977, 8(7): 1055-1057.
    [6]
    Geng W T, Freeman A J, Olson G B. Influence of alloying additions on the impurity induced grain boundary embrittlement[J]. Solid State Commun., 2001,119:585. doi: 10.1016/S0038-1098(01)00298-8
    [7]
    Zhang Dongbin, Wu Chengjian. Behavior of cerium in grain boundary segregation and its influence on equilibrium segregation of phosphorus at grain boundary in α-iron[J]. Acta Metallurgical Sinica, 1988,24(2):100. (张东彬, 吴承建. Ce在α-Fe晶界的偏聚及其对磷的晶界平衡偏聚的影响[J]. 金属学报, 1988,24(2):100.

    Zhang Dongbin, Wu Chengjian. Behavior of cerium in grain boundary segregation and its influence on equilibrium segregation of phosphorus at grain boundary in α-iron[J]. Acta Metallurgical Sinica, 1988, 24(2): 100.
    [8]
    Wang Haiyang, Gao Xueyun, Ren Huiping, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014,43(11):2739. (王海洋, 高雪云, 任慧平, 等. 稀土Ce在α-Fe中占位倾向与作用机理的密度泛函理论研究[J]. 稀有金属材料与工程, 2014,43(11):2739.

    Wang Haiyang, Gao Xueyun, Ren Huiping, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014, 43(11): 2739.
    [9]
    Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries[J]. Mater. Sci. Eng. A, 2002, 335: 49-54.
    [10]
    Jones R B, Younas C M, Heard P J. The effect of microscale distribution of boron on the yield strength of C-Mn steels subjected to neutron irradiation[J]. Acta Metall., 2002, 50(17): 4395-4417.
    [11]
    Song S H, Guo M A, Shen D D, et al. Effect of boron on the hot ductility of 2.25Cr1Mo steel[J]. Mater. Sci. Eng. A, 2003, 360: 96-100.
    [12]
    Takahashi J, Kawakami K, Ushioda K, et al. Quantitative analysis of grain boundaries in carbon- and nitrogen added ferritic steels by atom probe tomography[J]. Scripta Materialia, 2012,66:207. doi: 10.1016/j.scriptamat.2011.10.026
    [13]
    Han J C, Seolb J B, Jafari M, et al. Competitive grain boundary segregation of phosphorus and carbon governs delamination crack in a ferritic steel[J]. Materials Characterization, 2018,145:454. doi: 10.1016/j.matchar.2018.08.060
    [14]
    Li Xiaobing, Dong Xin, Zhao Pengxiang, et al. Effect of Mg Addition on the temper embrittlement in 2.25Cr-1Mo steel doped with 0.056% P—Mg segregation behavior at grain boundary[J]. Journal of Iron and Steel Research International, 2021, 28(10): 1259-1267.
    [15]
    Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020,36(5):1-13. (王德永, 屈天鹏. 镁洁净钢新技术发展与展望[J]. 炼钢, 2020,36(5):1-13.

    Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020, 36(5): 1-13.
    [16]
    Li Xiaobing, Min Yi, Liu Chengjun, et al. Effect of Mg addition on the characterization of γ-α phase transformation during continuous cooling in low carbon steel[J]. Steel Research International, 2015,86(12):1530-1540. doi: 10.1002/srin.201400517
    [17]
    Liu Ying, Liu Jianhua, He Yang, et al. Effect of Mg addition on solidification structure and inclusions in ALSI4130 steel[J]. Steelmaking, 2022,38(6):6-13. (刘颖, 刘建华, 何杨, 等. 镁处理对AISI4130钢组织及夹杂物的影响[J]. 炼钢, 2022,38(6):6-13.

    Liu Ying, Liu Jianhua, He Yang, et al. Effect of Mg addition on solidification structure and inclusions in ALSI4130 steel[J]. Steelmaking, 2022, 38(6): 6-13.
    [18]
    Li Yandong, Xing Weiwei, Li Xiaobing, et al. Effect of Mg addition on microstructure and properties of heat-affected zone in submerged arc welding of a Al-killed low carbon steel[j]. Materials, 2021, 14(9): 2445.
    [19]
    Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009,49(7):1063-1074. doi: 10.2355/isijinternational.49.1063
    [20]
    Badu S S, Bhadeshia H K D H. Stress and the acicular ferrite transformation[J]. Materials Science and Engineering A, 1992,156(1):1-9. doi: 10.1016/0921-5093(92)90410-3
    [21]
    Bor H Y, Chao C G, Ma C Y. The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy[J]. Scr. Mater. , 1997, 38(2): 329-335.
    [22]
    Sakata K, Suito H. Grain-growth-inhibiting effects of primary inclusion particles of ZrO2 and MgO in Fe-10masspctNi alloy[J]. Metallurgical and Materials Transactions A, 2000,31(4):1213-1223. doi: 10.1007/s11661-000-0117-z
    [23]
    Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles[J]. Nippon Steel Technical Research, 2004(90):2-6.
    [24]
    Tian Bo, Sun Ligen, Zhu Liguang. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature[J]. Steelmaking, 2020,36(6):72-77. (田博, 孙立根, 朱立光. 高温条件下Mg处理船体钢钉扎粒子的作用行为[J]. 炼钢, 2020,36(6):72-77.

    Tian Bo, Sun Ligen, Zhu Liguang. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature[J]. Steelmaking, 2020, 36(6): 72-77.
    [25]
    Ji Yongshuai, Li Yang, Jiang Zhouhua, et al. Process of adding magnesium oxide particles in preparation of iron and steel materials[J]. China Metallurgy, 2023,33(2):8-21. (鸡永帅, 李阳, 姜周华, 等. 外加镁系氧化物粒子在钢铁材料制备中的进展[J]. 中国冶金, 2023,33(2):8-21.

    Ji Yongshuai, Li Yang, Jiang Zhouhua, et al. Process of adding magnesium oxide particles in preparation of iron and steel materials[J]. China Metallurgy, 2023, 33(2): 8-21.
    [26]
    Han S Q, Zhao J Q, Wan R D, et al. Effect of microstructure on long-term aging stability of 2.25Cr-1Mo steel[J]. Heat Treatment of Metals, 2020,45(2):11-18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (106) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return