Citation: | Zhou Mingxing, Chi Yicheng, Liu Jingtao, Li Zhengqian, Liu Sihua, Zhang Daichen, Su Xue, Tian Junyu. Effects of transformation temperature and austenitization temperature on the transformation kinetics and microstructure of a Nb microalloyed high-carbon steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 143-149. doi: 10.7513/j.issn.1004-7638.2024.04.020 |
[1] |
Zhou Qingyue, Zhang Yinhua, Chen Zhaoyang, et al. Research and selection of rail steel in China[J]. Chinese Railways, 2011,(11):47-51. (周清跃, 张银花, 陈朝阳, 等. 我国铁路钢轨钢的研究及选用[J]. 中国铁路, 2011,(11):47-51.
Zhou Qingyue, Zhang Yinhua, Chen Zhaoyang, et al. Research and Selection of Rail Steel in China[J]. Chinese Railways, 2011, (11): 47-51.
|
[2] |
Calvo J, Jung I H, Elwazri A M, et al. Influence of the chemical composition on transformation behavior of low carbon microalloyed steels[J]. Materials Science & Engineering A, 2009,520:90-96.
|
[3] |
Xie K Y, Zheng T, Cairney J M, et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J]. Scripta Materialia, 2012,66:710-713.
|
[4] |
Deardo A J. Niobium in modern steels[J]. International Materials Reviews, 2013,48:371-402.
|
[5] |
Fu Liming, Wang Huanrong, Wang Wei, et al. Effect of solute drag and precipitate pinning on austenite grain growth in Ti-Nb microalloyed steels[J]. Journal of Iron and Steel Research, International, 2011,18(s1):383-387.
|
[6] |
Ray A. Niobium microalloying in rail steels[J]. Materials Science and Technology, 2017,33:1584-1600.
|
[7] |
Zhou Jiehu, Wu Feng, Feng Kaiming, et al. Ultrafine pearlitic transformation behavior of 2000 MPa ultra-high-strength steel wire under Nb microalloying[J]. Steel Research International, 2021,92:2000516.
|
[8] |
Dey I, Chandra S, Saha R, et al. Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel[J]. Materials Characterization, 2018,140:45-54.
|
[9] |
Jansto S G. MicroNiobium alloy approach in medium and high carbon steel bar, plate and sheet products[J]. Metallurgical & Materials Transactions B, 2014,45:438-444.
|
[10] |
Liu Chengjun, Huang Yahe, Liu Hongliang, et al. Effects and mechanisms of niobium on the fracture toughness of heavy rail steel[J]. Advanced Materials Research, 2011,163-167:110-116.
|
[11] |
Tian Junyi, Wang Houxin, Zhu Min, et al. Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb[J]. Materials Science & Engineering A, 2022,834:142622.
|
[12] |
Liu Feng, Xu Gang, Zhang Yulong, et al. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2013,20:1060-1066.
|
[13] |
Zener C. Kinetics of the decomposition of austenite[j]. Transactions AIME, 1945, 167: 550-595.
|
[14] |
Offerman S E, Wilderen L J G W, Dijk N H, et al. In-situ study of pearlite nucleation and growth during isothermal austenite decomposition in nearly eutectoid steel[J]. Acta Materialia, 2003,51:3927-3938.
|
[15] |
Yong Qilong, Zhang Zhengyan, Sun Xinjun, et al. Effect of dissolved niobium on eutectoid transformation behavior[J]. Journal of Iron and Steel Research, International, 2017, 24 973-978.
|
[16] |
Lee K J, Lee J K. Modelling of γ/α transformation in niobium-containing microalloyed steels[J]. Scripta Materialia, 1999, 40: 831-836.
|
[17] |
Yeong T P. Measurement and modelling of diffusional transformation of austenite in C-Mn steels[D]. Taibei: National Sun Yat-Sen University, 2001.
|