Citation: | Yang He, Hou Ziyong, Zhao Jun, Wang Yaru, Liang Jie, Chang Zhiyuan, Zhang Ling, Huang Xiaoxu. Effect of alloying elements V and Cu on microstructure and properties of Cu-bearing steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 129-136. doi: 10.7513/j.issn.1004-7638.2024.04.018 |
[1] |
Wang Lei, Zhu Sheng, Evans Steve, et al. Automobile recycling for remanufacturing in China: A systematic review on recycling legislations, models and methods[J]. Sustainable Production and Consumption, 2023,36:369-385. doi: 10.1016/j.spc.2023.01.016
|
[2] |
Li Yungang, Ren Xiqiang, Qi Yanfei, et al. Progress on yield strength and hydrogen embrittlement of Cu alloyed lightweight steel[J]. Iron and Steel, 2024,59(3):19-31. (李运刚, 任喜强, 齐艳飞, 等. 铜合金化轻质钢屈服强度及氢脆性能的研究进展[J]. 钢铁, 2024,59(3):19-31.
Li Yungang, Ren Xiqiang, Qi Yanfei, et al. Progress on yield strength and hydrogen embrittlement of Cu alloyed lightweight steel[J]. Iron and Steel, 2024, 59(3): 19-31.
|
[3] |
Li Yunjie, Yuan Guo, Li Linlin, et al. Ductile 2-GPa steels with hierarchical substructure[J]. Science, 2023,379:168-173. doi: 10.1126/science.add7857
|
[4] |
Gao Junheng, Jiang Suihe, Zhang Huairuo, et al. Facile route to bulk ultrafine-grain steels for high strength and ductility[J]. Nature, 2021,590(7845):262-267. doi: 10.1038/s41586-021-03246-3
|
[5] |
Jiao Z B, Luan J H, Miller M K, et al. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era[J]. Materials Today, 2017,20(3):142-154. doi: 10.1016/j.mattod.2016.07.002
|
[6] |
Shen Qing, Huang Daozu, Liu Wenqing, et al. Effect of Cu content on the precipitation behavior of Cu-rich and NiAl phases in steel[J]. Materials Characterization, 2022,187:111849. doi: 10.1016/j.matchar.2022.111849
|
[7] |
Misra R D K, Jia Z, O’malley R, et al. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties[J]. Materials Science and Engineering: A, 2011,528(29):8772-8780.
|
[8] |
Yamada K, Osuki T, Ogawa K, et al. Effects of Mo and Cu contents on sigma phase precipitation in 25Cr-5Ni-Mo-Cu-1Mn-0.18N duplex stainless steel[J]. ISIJ International, 2023,63(1):143-149. doi: 10.2355/isijinternational.ISIJINT-2022-361
|
[9] |
Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Materialia, 2015,97:58-67. doi: 10.1016/j.actamat.2015.06.063
|
[10] |
Kan L, Ye Q, Wang Z, et al. Improvement of strength and toughness of 1 GPa Cu-bearing HSLA steel by direct quenching[J]. Materials Science and Engineering: A, 2022,855:143875. doi: 10.1016/j.msea.2022.143875
|
[11] |
Song H, Jo M, Kim D W. Vanadium or copper alloyed duplex lightweight steelwith enhanced hydrogen embrittlement resistance at room temperature[J]. Materials Science and Engineering: A, 2021,817:141347. doi: 10.1016/j.msea.2021.141347
|
[12] |
Lee S, Estrin Y, De Cooman B C. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP Steel[J]. Metallurgical and Materials Transactions A, 2013,44(7):3136-3146. doi: 10.1007/s11661-013-1648-4
|
[13] |
Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strengh steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016,52(4):410-418. (张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016,52(4):410-418.
Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strengh steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418.
|
[14] |
Zhang Xianguang, Miyamoto Goro, Toji Yuki, et al. Role of cementite and retained austenite on austenite reversion from martensite and bainite in Fe-2Mn-1.5Si-0.3C alloy[J]. Acta Materialia, 2021,209:116772. doi: 10.1016/j.actamat.2021.116772
|
[15] |
Pavlina E J, Lee S J, Virtanen E T, et al. Effects of copper on the hardenability of a medium-carbon steel[J]. Metallurgical and Materials Transactions A, 2011,42(12):3572-3576. doi: 10.1007/s11661-011-0906-6
|
[16] |
Takahashi M, Bhadeshia H K D H. Model for transition from upper to lower bainite[J]. Materials Science and Technology, 1990,6:592-603. doi: 10.1179/mst.1990.6.7.592
|
[17] |
Caballero F G, Garcia Mateo C, Miller M K. Design of novel bainitic steels: Moving from ultrafine to nanoscale structures[J]. Journal of the Minerals, Metals and Materials Society, 2014,66(5):747-755. doi: 10.1007/s11837-014-0908-0
|
[18] |
Morsdorf L, Tasan C C, Ponge D, et al. 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence[J]. Acta Materialia, 2015,95:366-377. doi: 10.1016/j.actamat.2015.05.023
|
[19] |
Hou Z Y, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel[J]. Journal of Materials Science, 2019,54(12):9222-9234. doi: 10.1007/s10853-019-03530-8
|
[20] |
Ali M, Nyo T, Kaijalainen A, et al. Incompatible effects of B and B + Nb additions and inclusions' characteristics on the microstructures and mechanical properties of low-carbon steels[J]. Materials Science and Engineering: A, 2021,819:141453. doi: 10.1016/j.msea.2021.141453
|
[21] |
Luo Haiwen, Wang Xiaohui, Liu Zhenbao, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. Journal of Materials Science and Technology, 2020,51:130-136. doi: 10.1016/j.jmst.2020.04.001
|
[22] |
Cheng Zhaoyang, Liu Jing, Chen Wensi, et al. Effect of 0.5 mass% Cu addition on ductility and magnetic properties of Fe-6.5Si alloy[J]. Journal of Iron and Steel Research, International, 2016,23(7):717-721. doi: 10.1016/S1006-706X(16)30111-X
|
[23] |
Couturier L, De Geuser F, Descoins M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Materials & Design, 2016,107:416-425.
|
[24] |
Zeng Bin, Li Zhaodong, Sun Xinjun, et al. A novel low-cost hot rolled high strength steel for an automatic teller machine[J]. Journal of Iron and Steel Research, International, 2015,22(3):272-278. doi: 10.1016/S1006-706X(15)60041-3
|
[25] |
Liu Linxi, Zhao Liyuan, Sun Meng, et al. Importance of cold rolling and tempering on the microstructure evolution, precipitation behavior and mechanical responses of 9Cr3Co3W1Cu ferritic/martensitic steel[J]. Materials Characterization, 2023,206:113376. doi: 10.1016/j.matchar.2023.113376
|
[26] |
Yang Zhigang, Fang Hongsheng. An overview on bainite formation in steels[J]. Current Opinion in Solid State and Materials Science, 2005, 9(6): 277-286.
|
[27] |
Hou Ziyong, Hedström Peter, Xu Yunbo, et al. Microstructure of martensite in Fe-C-Cr and its implications for modelling of Carbide precipitation during tempering[J]. ISIJ International, 2014,54:2649-2656. doi: 10.2355/isijinternational.54.2649
|
[28] |
Maki T, Tsuzaki K, Tamura I. The morphology of microstructure composed of lath martensites in steels[J]. ISIJ International, 1980,20:207-214. doi: 10.2355/isijinternational1966.20.207
|
[29] |
Zhang Gongting, Tang Di, Zheng Zhiwang, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020,41(4):139-144. (张功庭, 唐荻, 郑之旺, 等. 热处理工艺对1000 MPa级含钒高强钢组织和性能的影响[J]. 钢铁钒钛, 2020,41(4):139-144.
Zhang Gongting, Tang Di, Zheng Zhiwang, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144.
|
[30] |
Liu S, Challa V S A, Natarajan V V, et al. Significant influence of carbon and niobium on the precipitation behavior and microstructural evolution and their consequent impact on mechanical properties in microalloyed steels[J]. Materials Science and Engineering: A, 2017,683:70-82. doi: 10.1016/j.msea.2016.11.102
|
[31] |
He S H, He B B, Zhu K Y, et al. Evolution of dislocation density in bainitic steel: Modeling and experiments[J]. Acta Materialia, 2018,149:46-56. doi: 10.1016/j.actamat.2018.02.023
|
[32] |
Pešička J, Kužel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2003,51(16):4847-4862. doi: 10.1016/S1359-6454(03)00324-0
|
[33] |
Wang X L, Wang Z Q, Huang A R, et al. Contribution of grain boundary misorientation to intragranular globular austenite reversion and resultant in grain refinement in a high-strength low-alloy steel[J]. Materials Characterization, 2020,169:110634. doi: 10.1016/j.matchar.2020.110634
|
[34] |
Karmakar A, Ghosh M, Chakrabarti D. Cold-rolling and inter-critical annealing of low-carbon steel: Effect of initial microstructure and heating-rate[J]. Materials Science and Engineering: A, 2013,564:389-399. doi: 10.1016/j.msea.2012.11.109
|
[35] |
Xiong Jie, Tong Yaolin, Peng Jielong, et al. Strength-toughness improvement of 13Cr4NiMo martensitic stainless steel with thermal cyclic heat treatment[J]. Journal of Iron and Steel Research International, 2023,30(8):1499-1510. doi: 10.1007/s42243-023-00960-2
|
[36] |
Meng Qingping, Rong Yonghua, Xu Zuyao. Nucleation of martensitic transformation[J]. Acta Metallurgica Sinica, 2004,40(4):337-341. (孟庆平, 戎咏华, 徐祖耀. 马氏体相变的形核问题[J]. 金属学报, 2004,40(4):337-341. doi: 10.3321/j.issn:0412-1961.2004.04.001
Meng Qingping, Rong Yonghua, Xu Zuyao. Nucleation of martensitic transformation[J]. Acta Metallurgica Sinica, 2004, 40(4): 337-341. doi: 10.3321/j.issn:0412-1961.2004.04.001
|