Citation: | Zhang Zhao, Feng Xu, Guo Xulong, Zhang Weiwei, Wang Kaimeng, Xin Ruishan, Pei Binghong, Xiao Dongping, Zhou Yang. Effect of precipitates on the creep rupture behavior of GH4141 superalloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 123-128. doi: 10.7513/j.issn.1004-7638.2024.04.017 |
[1] |
Yu Huichen, Xie Shishu, Zhao Guangpu, et al. High temperature tensile and creep rupture properties in Ni-based superalloy GH141[J]. Journal of Materials Engineering, 2003,(9):3-6. (于慧臣, 谢世殊, 赵光普, 等. GH141合金的高温拉伸及持久性能[J]. 材料工程, 2003,(9):3-6.
Yu Hui-chen, Xie Shi-shu, Zhao Guang-pu, et al. High Temperature Tensile and Creep Rupture Properties in Ni-based Superalloy GH141[J]. Journal of Materials Engineering, 2003 (9): 3-6.
|
[2] |
Radavich J F, Korth G E. High temperature degradation of alloy 718[C]// Proceedings of Seventh International Symposium on Superalloys, Seven. Springs, MD. 1992: 497-506.
|
[3] |
Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy[J]. Materials Science and Engineering:A, 2009,510:289-294.
|
[4] |
Lin Y C, Yin L X, Luo S C, et al. Effects of initial δ phase on creep behaviors and fracture characteristics of a nickel‐based superalloy[J]. Advanced Engineering Materials, 2018,20(4):1700820. doi: 10.1002/adem.201700820
|
[5] |
Liu Gang, Xiao Xueshan, Muriel Véron, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure[J]. Acta Materialia, 2020,185:493-506. doi: 10.1016/j.actamat.2019.12.038
|
[6] |
Wang D, Zhang J, Lou L H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy[J]. Materials Characterization, 2009,60(12):1517-1521. doi: 10.1016/j.matchar.2009.08.008
|
[7] |
He L Z, Zheng Q, Sun X F, et al. Effect of carbides on the creep properties of a Ni-base superalloy M963[J]. Materials Science and Engineering:A, 2005,397(1-2):297-304. doi: 10.1016/j.msea.2005.02.038
|
[8] |
Furillo F T, Davidson J M, Tien J K, et al. The effects of grain boundary carbides on the creep and back stress of a nickel-base superalloy[J]. Materials Science and Engineering, 1979,39(2):267-273. doi: 10.1016/0025-5416(79)90065-X
|
[9] |
Buerstmayr R, Theska F, Webster R, et al. Correlative analysis of grain boundary precipitates in Ni-based superalloy René 41[J]. Materials Characterization, 2021,178:111250. doi: 10.1016/j.matchar.2021.111250
|
[10] |
Li Q, Tian S, Yu H, et al. Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy[J]. Materials Science and Engineering:A, 2015,633:20-27. doi: 10.1016/j.msea.2015.02.056
|
[11] |
Zhang K, Liu X, Fan P, et al. Characterization of geometrically necessary dislocation evolution during creep of P91 steel using electron backscatter diffraction[J]. Materials Characterization, 2023,195:112501. doi: 10.1016/j.matchar.2022.112501
|