Zhang Zhao, Feng Xu, Guo Xulong, Zhang Weiwei, Wang Kaimeng, Xin Ruishan, Pei Binghong, Xiao Dongping, Zhou Yang. Effect of precipitates on the creep rupture behavior of GH4141 superalloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 123-128. doi: 10.7513/j.issn.1004-7638.2024.04.017
Citation: Zhang Zhao, Feng Xu, Guo Xulong, Zhang Weiwei, Wang Kaimeng, Xin Ruishan, Pei Binghong, Xiao Dongping, Zhou Yang. Effect of precipitates on the creep rupture behavior of GH4141 superalloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 123-128. doi: 10.7513/j.issn.1004-7638.2024.04.017

Effect of precipitates on the creep rupture behavior of GH4141 superalloy

doi: 10.7513/j.issn.1004-7638.2024.04.017
  • Received Date: 2023-06-01
  • Publish Date: 2024-08-30
  • This study focused on the effect of precipitates on the creep rupture behavior of GH4141 superalloy, involving creep crack initiation and propagation. Microstructures including carbides, γ′ precipitate hardening phase, void and intergranular crack were characterized by SE and EBSD. Meanwhile, plastic deformation and hardening mechanisms for crystal grains were analyzed. Voids occurred at the interfaces of grain boundary and carbides. Voids coalescence with wavy morphology were observed. The increase in crack length enhanced plastic deformation degree in front of the crack tip. The crystal grain strengthening was caused by the suppression of dislocation motion resulting from γ′ pinning effect. Due to the activation of multiple glide systems, dislocation piled up and tangled to enable crystal grain strengthening.
  • [1]
    Yu Huichen, Xie Shishu, Zhao Guangpu, et al. High temperature tensile and creep rupture properties in Ni-based superalloy GH141[J]. Journal of Materials Engineering, 2003,(9):3-6. (于慧臣, 谢世殊, 赵光普, 等. GH141合金的高温拉伸及持久性能[J]. 材料工程, 2003,(9):3-6.

    Yu Hui-chen, Xie Shi-shu, Zhao Guang-pu, et al. High Temperature Tensile and Creep Rupture Properties in Ni-based Superalloy GH141[J]. Journal of Materials Engineering, 2003 (9): 3-6.
    [2]
    Radavich J F, Korth G E. High temperature degradation of alloy 718[C]// Proceedings of Seventh International Symposium on Superalloys, Seven. Springs, MD. 1992: 497-506.
    [3]
    Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy[J]. Materials Science and Engineering:A, 2009,510:289-294.
    [4]
    Lin Y C, Yin L X, Luo S C, et al. Effects of initial δ phase on creep behaviors and fracture characteristics of a nickel‐based superalloy[J]. Advanced Engineering Materials, 2018,20(4):1700820. doi: 10.1002/adem.201700820
    [5]
    Liu Gang, Xiao Xueshan, Muriel Véron, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure[J]. Acta Materialia, 2020,185:493-506. doi: 10.1016/j.actamat.2019.12.038
    [6]
    Wang D, Zhang J, Lou L H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy[J]. Materials Characterization, 2009,60(12):1517-1521. doi: 10.1016/j.matchar.2009.08.008
    [7]
    He L Z, Zheng Q, Sun X F, et al. Effect of carbides on the creep properties of a Ni-base superalloy M963[J]. Materials Science and Engineering:A, 2005,397(1-2):297-304. doi: 10.1016/j.msea.2005.02.038
    [8]
    Furillo F T, Davidson J M, Tien J K, et al. The effects of grain boundary carbides on the creep and back stress of a nickel-base superalloy[J]. Materials Science and Engineering, 1979,39(2):267-273. doi: 10.1016/0025-5416(79)90065-X
    [9]
    Buerstmayr R, Theska F, Webster R, et al. Correlative analysis of grain boundary precipitates in Ni-based superalloy René 41[J]. Materials Characterization, 2021,178:111250. doi: 10.1016/j.matchar.2021.111250
    [10]
    Li Q, Tian S, Yu H, et al. Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy[J]. Materials Science and Engineering:A, 2015,633:20-27. doi: 10.1016/j.msea.2015.02.056
    [11]
    Zhang K, Liu X, Fan P, et al. Characterization of geometrically necessary dislocation evolution during creep of P91 steel using electron backscatter diffraction[J]. Materials Characterization, 2023,195:112501. doi: 10.1016/j.matchar.2022.112501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (89) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return