Jin Jiahao, Cai Zongying, Liang Jinglong, Song Shaofei, Cao Weigang. Research progress on deactivation mechanism and preventive measures of V2O5-WO3 / TiO2 catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 95-104. doi: 10.7513/j.issn.1004-7638.2024.04.014
Citation: Jin Jiahao, Cai Zongying, Liang Jinglong, Song Shaofei, Cao Weigang. Research progress on deactivation mechanism and preventive measures of V2O5-WO3 / TiO2 catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 95-104. doi: 10.7513/j.issn.1004-7638.2024.04.014

Research progress on deactivation mechanism and preventive measures of V2O5-WO3 / TiO2 catalyst

doi: 10.7513/j.issn.1004-7638.2024.04.014
  • Received Date: 2023-12-01
  • Publish Date: 2024-08-30
  • With growing global energy demand and the improvement of environmental protection requirements, selective catalytic reduction (SCR) technology has attracted considerable attention as an effective way to reduce atmospheric nitrogen oxide (NOx) emissions. However, the vanadium-titanium-based V2O5-WO3/TiO2 SCR catalyst as the key role of SCR will encounter deactivation problems during long-term operation, which limits its practical application. Therefore, it is significant to study the deactivation mechanism and preventive measures. This paper systematically expounds on the deactivation mechanism of the catalyst and the preventive measures. The deactivation of the catalyst is mainly caused by the high-temperature environment and the dust, alkali (earth) metal, acid gas and heavy metal in the flue gas through physical or chemical action. In order to slow down the deactivation of the catalyst and prolong its service life, the preventive measures were reviewed from three aspects including pre-dust removal, catalyst modification and SCR system optimization. Studying the deactivation mechanism of the catalyst can not only make the component changes clear in the deactivation process, but also provide a basis for the inactivation prevention and the preparation of new catalyst materials. This article provides a reference for prolonging the working time of V2O5-WO3/TiO2 SCR catalyst and recovering waste SCR catalyst.
  • [1]
    Zeeshan Ajmal, Mahmood ul Haq, Yassine Naciri, et al. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO2, NOx, and VOCs[J]. Chemosphere, 2022,308(2):136358.
    [2]
    Guo Yiqi, Zhu Lisha, Wang Xiaopeng, et al. Assessing environmental impact of NOx and SO2 emissions in textiles production with chemical footprint[J]. Science of the Total Environment, 2022,831:154961. doi: 10.1016/j.scitotenv.2022.154961
    [3]
    Zhao Shilin, Peng Junlin, Ge Runqi. Poisoning and regeneration of commercial V2O5−WO3/TiO2 selective catalytic reduction (SCR) catalyst in coal-fired power plants[J]. Process Safety and Environmental Protection, Part B, 2022,168:971-992.
    [4]
    Zhang Zhenquan, Zhao Beibei, Li Lanjie, et al. Study on selective separation of vanadium, titanmium and tungsten from spent SCR denitration catalyst[J]. Iron Steel Vanadium Titanium, 2021,42(1):24-31. (张振全, 赵备备, 李兰杰, 等. 废SCR脱硝催化剂钒、钛、钨选择性分离研究[J]. 钢铁钒钛, 2021,42(1):24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004

    Zhang Zhenquan, Zhao Beibei, Li Lanjie, et al. Study on selective separation of vanadium, titanmium and tungsten from spent SCR denitration catalyst[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004
    [5]
    Topsøe N. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994,265(5176):1217-1219. doi: 10.1126/science.265.5176.1217
    [6]
    Mei Yuefei, Yue Ni, Duo Hongjian, et al. Analysis and optimization of SCR catalyst partial wear principle in denitration system[J]. Science and Technology Innovation Herald, 2023(1):38-41. (梅跃飞, 岳妮, 多鸿建, 等. 脱硝系统SCR催化剂局部磨损原理分析和优化改造[J]. 科学技术创新, 2023(1):38-41. doi: 10.3969/j.issn.1673-1328.2023.01.011

    Mei Yuefei, Yue Ni, Duo Hongjian, et al. Analysis and optimization of SCR catalyst partial wear principle in denitration system[J]. Science and Technology Innovation Herald, 2023(1): 38-41. doi: 10.3969/j.issn.1673-1328.2023.01.011
    [7]
    Hu Wenshuo, Gao Xiang, Deng Yawen, et al. Deactivation mechanism of arsenic and resistance effect of SO42- on commercial catalysts for selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2016,293:118-128. doi: 10.1016/j.cej.2016.02.095
    [8]
    Liu Zhong, Han Jian, Zhao Li, et al. Effects of Se and SeO2 on the denitrification performance of V2O5−WO3/TiO2 SCR catalyst[J]. Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications, 2019,587:117263.
    [9]
    Lanza Aldo, Usberti Nicola, Forzatti Pio, et al. Kinetic and mass transfer effects of fly ash deposition on the performance of SCR monoliths: A study in microslab reactor[J]. Industrial & Engineering Chemistry Research, 2021,60(18):6742-6752.
    [10]
    Stobert T R P E , Wang Jianbo, George Wensell, et al. Application of SCR catalyst in high CaO coal project[C]// Chinese Society of Environmental Science Annual Conference Excellent Proceedings. Suzhou: China Environmental Science Press, 2006. (Stobert T R P E , 王剑波, George Wensell, 等. SCR催化剂在高CaO煤项目中的应用[C]// 中国环境科学学会学术年会优秀论文集. 苏州:中国环境科学出版社, 2006.

    Stobert T R P E , Wang Jianbo, George Wensell, et al. Application of SCR catalyst in high CaO coal project[C]// Chinese Society of Environmental Science Annual Conference Excellent Proceedings. Suzhou: China Environmental Science Press, 2006.
    [11]
    Wang Xiangmin, Du Xuesen, Zhang Li, et al. Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5−WO3/TiO2 catalyst for NO reduction[J]. Applied Catalysis A: General, 2018,559:112-121. doi: 10.1016/j.apcata.2018.04.025
    [12]
    Xu Liwen, Wang Chizhong, Chang Huazhen, et al. New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR[J]. Environmental Science & Technology, 2018,52(12):7064-7071.
    [13]
    Cimino Stefano, Ferone Claudio, Cioffi Raffaele, et al. A case study for the deactivation and regeneration of a V2O5−WO3/TiO2 catalyst in a tail-end SCR unit of a municipal waste incineration plant[J]. Catalysts, 2019,9(5):464. doi: 10.3390/catal9050464
    [14]
    Zheng Yang, Guo Yangyang, Wang Jian, et al. Ca doping effect on the competition of NH3–SCR and NH3 oxidation reactions over vanadium-based catalysts[J]. The Journal of Physical Chemistry C, 2021,125(11):6128-6136. doi: 10.1021/acs.jpcc.1c00677
    [15]
    Nicosia D, Czekaj I, Kröcher O. Chemical deactivation of V2O5−WO3/TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B: Environmental, 2008,77(3-4):228-236. doi: 10.1016/j.apcatb.2007.07.032
    [16]
    Ali Zulfiqar, Lu Qiang, Iqbal Tahir, et al. Poisoning effects of lead species on the V2O5−WO3/TiO2 type NH3﹕elective catalytic reduction catalyst[J]. Asia-Pacific Journal of Chemical Engineering, 2019,14(4):2309.
    [17]
    Janssen F J J G, Kerkhof F M G V D, Bosch H, et al. Cheminform abstract: mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. part 2. isotopic transient studies with oxygen-18 and nitrogen-15[J]. Chem. Inform, 1988,19(14):198814017.
    [18]
    Zheng Yuanjing, Jensen Anker Degn, Johnsson Jan Erik, et al. Deactivation of V2O5−WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab-and pilot-scale experiments[J]. Applied Catalysis B: Environmental, 2008,83(3-4):186-194. doi: 10.1016/j.apcatb.2008.02.019
    [19]
    Tian Yuanmeng, Yang Jian, Yang Chen, et al. Comparative study of the poisoning effect of NaCl and Na2O on selective catalytic reduction of NO with NH3 over V2O5−WO3/TiO2 catalyst[J]. Journal of the Energy Institute, 2019,92:1045-1052. doi: 10.1016/j.joei.2018.07.002
    [20]
    Xiao Haiping, Chen Yu, Qi Cong, et al. Effect of Na poisoning catalyst (V2O5–WO3/TiO2) on denitration process and SO3 formation[J]. Applied Surface Science, 2018,433(1):341-348.
    [21]
    Jiang Ye, Gao Xiang, Zhang Yongxin, et al. Effect of KCl on the selective catalytic reduction of NO with NH3 over vanadia‐based catalysts for biomass combustion[J]. Environmental Progress & Sustainable Energy, 2014,33(2):390-395.
    [22]
    Nie Hua, Li Wei, Wu Qirong, et al. The poisoning of V2O5−WO3/TiO2 and V2O5-Ce(SO4)2/TiO2 SCR catalysts by KCl and the partial regeneration by SO2[J]. Multidisciplinary Digital Publishing Institute, 2020,10:207.
    [23]
    Li Xiang, Li Xiansheng, Yang Ralph T, et al. The poisoning effects of calcium on V2O5−WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium[J]. Molecular Catalysis, 2017,434:16-24. doi: 10.1016/j.mcat.2017.01.010
    [24]
    Xiang Jinyao, Du Xuesen, Wan Yuyi, et al. Alkali-driven active site shift of fast SCR with NH3 on V2O5–WO3/TiO2 catalyst via a novel Eley–Rideal mechanism[J]. Catal. Sci. Technol, 2019,9(21):6085-6091. doi: 10.1039/C9CY01565E
    [25]
    He Deliang, Ren Huiying, Zhu Tianshi, et al. Study on the calcium-poisoning mechanism of the V2O5–WO3/TiO2 SCR catalyst[J]. Journal of Basic Science and Engineering, 2018,26(1):1-11. (何德良, 任慧莺, 朱天时, 等. V2O5−WO3/TiO2 SCR催化剂的钙中毒机理研究[J]. 应用基础与工程科学学报, 2018,26(1):1-11.

    He Deliang, Ren Huiying, Zhu Tianshi, et al. Study on the calcium-poisoning mechanism of the V2O5–WO3/TiO2 SCR catalyst[J]. Journal of Basic Science and Engineering, 2018, 26(1): 1-11.
    [26]
    Zhang Yusheng, Li Changming, Wang Chao, et al. Pilot-scale test of a V2O5–WO3/TiO2-coated type of honeycomb DeNO x catalyst and its deactivation mechanism[J]. Industrial & Engineering Chemistry Research, 2018,58(2):828-835.
    [27]
    Deng Lei, Liu Xuan, Cao Peiqing, et al. A study on deactivation of V2O5−WO3/TiO2 SCR catalyst by alkali metals during entrained-flow combustion[J]. Elsevier, 2017,90:743-751.
    [28]
    Deng Lei, Zhu Zhengrong, Wang Yikun, et al. Deactivation influence of HF on the V2O5−WO3/TiO2 SCR catalyst[J]. Energy & Fuels, 2021,35:4377-4386.
    [29]
    Wang Yazhou, Yi Wen, Yu Jie, et al. Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MO x–WO3/TiO2 (M = Fe, Mn, Cu, and V) catalysts for NH3-SCR[J]. Environmental Science & Technology: ES&T, 2020,54(19):12612-12620.
    [30]
    Du Xuesen, Yang Guangpeng, Chen Yanrong, et al. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst[J]. Appl. Surf. Sci, 2017,392:162-168. doi: 10.1016/j.apsusc.2016.09.036
    [31]
    Lu Qiang, Wu Yachang, Xu Mingxin, et al. Progress in the development of SCR denitration catalysts with resistance of high-temperature deactivation[J]. Materials Reports, 2022,36(13):64-72. (陆强, 吴亚昌, 徐明新, 等. 抗高温失活SCR脱硝催化剂研究进展[J]. 材料导报, 2022,36(13):64-72. doi: 10.11896/cldb.20090242

    Lu Qiang, Wu Yachang, Xu Mingxin, et al. Progress in the development of SCR denitration catalysts with resistance of high-temperature deactivation[J]. Materials Reports, 2022, 36(13): 64-72. doi: 10.11896/cldb.20090242
    [32]
    Chapman David M. Behavior of titania-supported vanadia and tungsta SCR catalysts at high temperatures in reactant streams: Tungsten and vanadium oxide and hydroxide vapor pressure reduction by surficial stabilization[J]. Applied Catalysis A General, 2011,392(1-2):143-150. doi: 10.1016/j.apcata.2010.11.005
    [33]
    Lu Qiang, Pei Xinqi, Xu Mingxin, et al. Progress in the development and regeneration of SCR catalysts for anti-arsenic poisoning[J]. Chem Ind Eng Prog, 2021,40(5):2365-2374.
    [34]
    Wang Dong, Chen Qiuzhun, Zhang Xiang, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: A critical review[J]. Environmental Science & Technology, 2021,55(7):2743-2766.
    [35]
    Chen Gongda, Xiong Shangchao, Chen Xiaoping, et al. Penetration of arsenic and deactivation of a honeycomb V2O5−WO3/TiO2 catalyst in a glass furnace[J]. Environmental Science & Technology, 2021,55:11368-11374.
    [36]
    Ding Long, Wang Yifan, Qian Lixin, et al. Flue gas deNOxing spent V2O5−WO3/TiO2 catalyst: A review of deactivation mechanisms and current disposal status[J]. Fuel, 2023,338:127268. doi: 10.1016/j.fuel.2022.127268
    [37]
    Xu Dong, Wu Wenhao, Wang Penglu, et al. Boosting the alkali/heavy metal poisoning resistance for NO removal by using iron-titanium pillared montmorillonite catalysts[J]. Journal of Hazardous Materials, 2020,399:122947. doi: 10.1016/j.jhazmat.2020.122947
    [38]
    Xu Liwen, Wu Qingru, Chang Huazhen, et al. Chemical deactivation of selective catalytic reduction catalyst: Investigating the influence and mechanism of SeO2 poisoning[J]. Fuel, 2020,269:117435. doi: 10.1016/j.fuel.2020.117435
    [39]
    Wu Yangwen, Zhou Xinyue, Hu Zhuang, et al. A comprehensive review of the heavy metal issues regarding commercial vanadium-titanium-based SCR catalyst[J]. Journals & Books, 2023,857:159712.
    [40]
    Wu Yangwen, Zhou Xinyue, Cai Qi, et al. Intrinsic mechanism insight of the interaction between lead species and the vanadium-based catalysts based on first-principles investigation[J]. Journal of Colloid and Interface Science, 2022,607:1362-1372. doi: 10.1016/j.jcis.2021.09.081
    [41]
    Wu Pengju, Tang Xianggang, He Zhaohui, et al. Alkali metal poisoning and regeneration of selective catalytic reduction denitration catalysts: recent advances and future perspectives[J]. Energy and Fuels, 2022,36(11):5622-5646. doi: 10.1021/acs.energyfuels.2c01036
    [42]
    Wu Yangwen, Zhou Xinyue, Mi Tengge, et al. First-principles insights into the adsorption and interaction mechanism of selenium on selective catalytic reduction catalyst[J]. Chemosphere, 2021,275:130057. doi: 10.1016/j.chemosphere.2021.130057
    [43]
    Liu Xianghui, Yang Qiaowen. Research on the deactivation mechanism of a denitration catalyst WO3–V2O5/TiO2 at a coal-fired power plant[J]. RSC Advances, 2020,10(72):44025-44033. doi: 10.1039/D0RA06812H
    [44]
    Granger Pascal, Siaka Hermann W, Umbarkar Shubhangi B. What news in the surface chemistry of bulk and supported vanadia based SCR-catalysts: Improvements in their resistance to poisoning and thermal sintering[J]. The Chemical Record, 2018,19(9):1813-1828.
    [45]
    Hu Xiaofu, Liu Xiuru, Chen Feng, et al. Research progress on deactivation mechanism and cyclic regeneration technology of tiv-based selective catalytic reduction NOx catalysts[C]//Proceedings of the 2018 National Academic Conference on Environmental Engineering (Volume 2). Beijing:《Environmental Engineering》Editorial, 2018: 253-259. (胡小夫, 刘秀如, 陈锋, 等. 钒钛系SCR脱硝催化剂失活机理及循环再生技术[C]//《环境工程》2018年全国学术年会论文集(中册). 北京:《环境工程》编辑部, 2018: 253-259.

    Hu Xiaofu, Liu Xiuru, Chen Feng, et al. Research progress on deactivation mechanism and cyclic regeneration technology of tiv-based selective catalytic reduction NOx catalysts[C]//Proceedings of the 2018 National Academic Conference on Environmental Engineering (Volume 2). Beijing:《Environmental Engineering》Editorial, 2018: 253-259.
    [46]
    Wang Bo, Yang Qiaowen. Optimization of roasting parameters for recovery of vanadium and tungsten from spent SCR catalyst with composite roasting[J]. Processes, 2021,9(11):1923. doi: 10.3390/pr9111923
    [47]
    Hubei Siboying Environmental Protection Technology Co., Ltd. A pre-dust removal device for a flue gas SCR denitration system: China, CN201821222137.1[P]. 2019-04-09. (湖北思搏盈环保科技有限公司. 一种烟气SCR脱硝系统预除尘装置: 中国,CN201821222137.1[P]. 2019-04-09.

    Hubei Siboying Environmental Protection Technology Co., Ltd.. A pre-dust removal device for a flue gas SCR denitration system: China, CN201821222137.1[P]. 2019-04-09.
    [48]
    Lei Yu. Research on large particle ash interceptor in SCR flue gas denitrification system[D]. Wuhan: Huazhong University of Science and Technology, 2022. (雷彧. SCR脱硝大颗粒灰拦截装置及技术研究[D]. 武汉:华中科技大学, 2022.

    Lei Yu. Research on large particle ash interceptor in SCR flue gas denitrification system[D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [49]
    Zhang Changhui, Tian Yanfeng, Jiang Jianzhong. Cause analysis and preventive measures of SCR catalyst plugging in CFB boiler[J]. Journal of Electric Power, 2022,37(4):324-328. (张昌会, 田言峰, 江建忠. 循环流化床锅炉烟道型SCR催化剂堵灰原因分析和预防措施[J]. 电力学报, 2022,37(4):324-328.

    Zhang Changhui, Tian Yanfeng, Jiang Jianzhong. Cause analysis and preventive measures of SCR catalyst plugging in CFB boiler[J]. Journal of Electric Power, 2022, 37(4): 324-328.
    [50]
    Ren Fuchun, Ren Yujie, Zhang Jiping. Research on protection of denitrification catalyst by high-temperature dedusting before SCR for coal-fired boiler[J]. Journal of Energy Conservation, 2023,42(3):49-52. (任福春, 任育杰, 张纪平. 燃煤锅炉SCR前高温除尘对脱硝催化剂保护的研究[J]. 节能, 2023,42(3):49-52. doi: 10.3969/j.issn.1004-7948.2023.03.013

    Ren Fuchun, Ren Yujie, Zhang Jiping. Research on protection of denitrification catalyst by high-temperature dedusting before SCR for coal-fired boiler[J]. Journal of Energy Conservation, 2023, 42(3): 49-52. doi: 10.3969/j.issn.1004-7948.2023.03.013
    [51]
    Yu Wenchao, Wu Xiaodong, Si Zhichun, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5−WO3/TiO2 catalyst[J]. Applied Surface Science, 2013,283:209-214.
    [52]
    Kong Ming, Liu Qingcai, Jiang Lijun, et al. K+ deactivation of V2O5−WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: Effect of vanadium content[J]. Chemical Engineering Journal, 2019,370:518-526. doi: 10.1016/j.cej.2019.03.156
    [53]
    Cao Jun, Liu Weizao, Kang Keke, et al. Effects of the morphology and crystal-plane of TiO2 on NH3-SCR performance and K tolerance of V2O5−WO3/TiO2 catalyst[J]. Applied Catalysis A: General, 2021,623:118285. doi: 10.1016/j.apcata.2021.118285
    [54]
    Peng Yaoyao, Song Lei, Lu Siru, et al. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42−−TiO2[J]. Chinese Journal of Chemical Engineering, 2023,55:246-256. doi: 10.1016/j.cjche.2022.05.031
    [55]
    Yan Zidi, Shi Xiaoyan, Yu Yunbo, et al. Alkali resistance promotion of Ce-doped vanadium-titanic- based NH3-SCR catalysts[J]. Journal of Environmental Sciences, 2018,73(11):155-161.
    [56]
    Guo Kai, Ji Jiawei, Song Wang, et al. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review[J]. Applied Catalysis B: Environmental, 2021,297:120388. doi: 10.1016/j.apcatb.2021.120388
    [57]
    Wang Xiangmin, Du Xuesen, Zhang Li, et al. Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5−WO3/TiO2 catalyst for NO reduction[J]. Applied Catalysis A General An International Journal Devoted to Catalytic Science & Its Applications, 2018,559:112-121.
    [58]
    Xin Qi, Yang Yang, Liu Shaojun, et al. Mass transfer of multi-pollutants over titania-based SCR catalyst: A molecular dynamics study[J]. Applied Energy, 2023,331:120450. doi: 10.1016/j.apenergy.2022.120450
    [59]
    Song Inhak, Lee Hwangho, Jeon Se Won, et al. Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NO x removal[J]. Nature Communications, 2021,12(1):901. doi: 10.1038/s41467-021-21228-x
    [60]
    Ye Dong, Qu Ruiyang, Liu Shaojun, et al. New insights into the decomposition behavior of NH4HSO4 on the SiO2-decorated SCR catalyst and its enhanced SO2 -resistant ability[J]. Acs Omega, 2019,4(3):4927-4935. doi: 10.1021/acsomega.8b03128
    [61]
    Jeon Se Won, Song Inhak, Lee Hwangho, et al. Enhanced SO2 resistance of V2O5/WO3-TiO2 catalyst physically mixed with alumina for the selective catalytic reduction of NO x with NH3[J]. Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B, 2022,433(3):133836.
    [62]
    Jung Yoo Jin, Cha Jin Sun, Kim Beom Sik. Characteristics of deactivation and thermal regeneration of Nb-doped V2O5−WO3/TiO2 catalyst for NH3–SCR reaction[J]. Environmental Research, 2023,227:115744. doi: 10.1016/j.envres.2023.115744
    [63]
    Shin Jung Hun, Choi Gyeong Ryun, Hong Sung Chang. Vanadium catalyst based on a tungsten trioxide structure modified with antimony in NH3-selective catalytic reduction for improved low-temperature activity[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2022,574:151571.
    [64]
    Chen Mengyin, Zhao Mengmeng, Tang Fushun, et al. Effect of Ce doping into V2O5−WO3/TiO2 catalysts on the selective catalytic reduction of NO x by NH3[J]. Journal of Rare Earths, 2017,35(12):1206-1215. doi: 10.1016/j.jre.2017.06.004
    [65]
    Guo Yangyang, Xu Xiaofei, Gao Hong, et al. Ca-poisoning effect on V2O5−WO3/TiO2 and V2O5−WO3-CeO2/TiO2 catalysts with different vanadium loading[J]. Catalysts, 2021,11:445. doi: 10.3390/catal11040445
    [66]
    Chen Mengmeng, Jin Qijie, Tao Xingjun, et al. Novel W-Zr-O-x /TiO2 catalyst for selective catalytic reduction of NO by NH3 at high temperature[J]. Catalysis Today, 2020,358:254-262. doi: 10.1016/j.cattod.2019.06.045
    [67]
    Shi Anju, Wang Xinquan, Yu Tie. The effect of zirconia additive on the activity and structure stability of V2O5−WO3/TiO2 ammonia SCR catalysts[J]. Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2011,106(3/4):359-369.
    [68]
    Tan Piqiang, Chen Yingjie, Wang Zitong, et al. Experimental study of emission characteristics and performance of SCR coated on DPF with different catalyst washcoat loadings[J]. Fuel, 2023,346:128288. doi: 10.1016/j.fuel.2023.128288
    [69]
    Yu Hongchao, Yan Shejiao, Wu Feng, et al. Research on optimization of flue gas flow field in high temperature SCR denitration system of 110 m2 sintering machine in a steel plant[J]. Mining Engineering, 2023,21(2):57-60. (于宏超, 严社教, 武峰, 等. 某钢厂110 m2烧结机高温SCR脱硝系统烟气流场优化研究[J]. 矿业工程, 2023,21(2):57-60.

    Yu Hongchao, Yan Shejiao, Wu Feng, et al. Research on optimization of flue gas flow field in high temperature SCR denitration system of 110 m2 sintering machine in a steel plant[J]. Mining Engineering, 2023, 21(2): 57-60.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (189) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return