Shen Jiancheng, Jia Haishen, Zhang Jilin, Luo Wencui, Yi Xiangbin. Prediction of high temperature rheological behavior of TC4 titanium alloy based on Z-A constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 76-83. doi: 10.7513/j.issn.1004-7638.2024.04.012
Citation: Shen Jiancheng, Jia Haishen, Zhang Jilin, Luo Wencui, Yi Xiangbin. Prediction of high temperature rheological behavior of TC4 titanium alloy based on Z-A constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 76-83. doi: 10.7513/j.issn.1004-7638.2024.04.012

Prediction of high temperature rheological behavior of TC4 titanium alloy based on Z-A constitutive model

doi: 10.7513/j.issn.1004-7638.2024.04.012
  • Received Date: 2023-11-14
  • Publish Date: 2024-08-30
  • The constitutive model plays an important role in describing the response behavior of materials under different deformation conditions and in optimizing the hot forming process. Therefore, in order to obtain the physical constitutive model for accurately describing the high temperature rheological behavior of TC4 titanium alloy, the isothermal compression experiments were performed under different temperatures (500~900 ℃) and different strain rates (0.01, 0.1, 1 s−1) by using the Gleeble-3800 thermal simulator. According to the experimental data, the parameters of modified Z-A constitutive model are calibrated, and its effectivity is analyzed. Based on the analysis results, an optimized Z-A constitutive model was established, and the predictability of the model was discussed with the help of correlation coefficient R, mean absolute relative error value AARE and root mean square error RSME. The results indicate that the optimized Z-A constitutive model can accurately predict the high-temperature rheological behavior of the material. The R, AARE and RSME of the model are 0.9992, 1.63% and 1.3252, respectively.
  • [1]
    Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020,10(6):705. doi: 10.3390/met10060705
    [2]
    Ji Ce, Huang Huagui, Wang Tao, et al. Recent advances and future trends in processing methods and characterization technologies of aluminum foam composite structures: A review[J]. Journal of Manufacturing Processes, 2023, 93: 116-152.
    [3]
    Jin Hexi, Wei Kexiang, Li Jianming, et al. Research progress of titanium alloys for aviation[J]. The Chinese Journal of Nonferrous Metals, 2015,25(2):280-292. (金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015,25(2):280-292.

    Jin Hexi, Wei Kexiang, Li Jianming, et al. Research progress of titanium alloys for aviation[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292.
    [4]
    Zhu Zhishou. Research status and development of titanium alloy technology for aviation in China[J]. Journal of Aeronautical Materials, 2014,34(4):44-50. (朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014,34(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004

    Zhu Zhishou. Research status and development of titanium alloy technology for aviation in China[J]. Journal of Aeronautical Materials, 2014, 34(4): 44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004
    [5]
    Zhang Bi, Yang Fulun, Wang Jiexin. Fundamental aspects in vibration-assisted tapping[J]. Journal of Materials Processing Technology, 2003,132(1-3):345-352. doi: 10.1016/S0924-0136(02)00950-0
    [6]
    Hor A, Morel F, Lebrun J, et al. An experimental investigation of the behaviour of steels over large temperature and strain rate ranges[J]. International Journal of Mechanical Sciences, 2013,67:108-122. doi: 10.1016/j.ijmecsci.2013.01.003
    [7]
    Muszka K, Dziedzic D, Madej L, et al. The development of ultrafine-grained hot rolling products using advanced thermomechanical processing[J]. Materials Science and Engineering A, 2014,610:290-296. doi: 10.1016/j.msea.2014.05.051
    [8]
    Ma Xiong, Zeng Weidong, Sun Yu, et al. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure[J]. Materials Science and Engineering A, 2012,538:182-189. doi: 10.1016/j.msea.2012.01.027
    [9]
    Wu Shuaihuai, Zhu Baohong, Jiang Wei, et al. Hot deformation behavior and microstructure evolution of a novel Al-Zn-Mg-Li-Cu alloy[J]. Materials, 2022,15(19):6769. doi: 10.3390/ma15196769
    [10]
    Zhang Ming, Liu Xianli, Yue Caixu. Study on constitutive model for titanium alloy by coupling strain-temperature and dynamic crystallization mechanical[J]. Science and Technology for Aerospace Engineering, 2021,40(11):1641-1648. (张铭, 刘献礼, 岳彩旭, 等. 考虑应变-温度耦合与高温动态结晶的钛合金本构模型研究[J]. 机械科学与技术, 2021,40(11):1641-1648.

    Zhang Ming, Liu Xianli, Yue Caixu. Study on constitutive model for titanium alloy by coupling strain-temperature and dynamic crystallization mechanical[J]. Science and Technology for Aerospace Engineering, 2021, 40(11): 1641-1648.
    [11]
    Shin H, Ju Y, Choi M K, et al. Flow stress description characteristics of some constitutive models at wide strain rates and temperatures[J]. Technologies, 2022,10(2):52. doi: 10.3390/technologies10020052
    [12]
    Jiang Ziwei, Yang Dong, Chen Jianbin. Dynamic constitutive model of titanium alloy Ti-6A1-4V for high speed cutting: A review[J]. Journal of Aeronautical Materials, 2023,43(4):55-67. (姜紫薇, 杨东, 陈建彬. 面向高速切削的钛合金Ti-6Al-4V动态本构模型: 综述[J]. 航空材料学报, 2023,43(4):55-67. doi: 10.11868/j.issn.1005-5053.2022.000169

    Jiang Ziwei, Yang Dong, Chen Jianbin. Dynamic constitutive model of titanium alloy Ti-6A1-4V for high speed cutting: A review[J]. Journal of Aeronautical Materials, 2023, 43(4): 55-67. doi: 10.11868/j.issn.1005-5053.2022.000169
    [13]
    Feng Qiuyuan, Guo Jialin, Yang Jun, et al. Hot deformation behavior of Ti60 high temperature titanium alloy I: Constitutive equations[J]. Journal of Plasticity Engineering, 2021,28(11):158-166. (冯秋元, 郭佳林, 杨军, 等. Ti60高温钛合金的热变形行为 Ⅰ: 本构方程[J]. 塑性工程学报, 2021,28(11):158-166. doi: 10.3969/j.issn.1007-2012.2021.11.022

    Feng Qiuyuan, Guo Jialin, Yang Jun, et al. Hot deformation behavior of Ti60 high temperature titanium alloy I: Constitutive equations[J]. Journal of Plasticity Engineering, 2021, 28(11): 158-166. doi: 10.3969/j.issn.1007-2012.2021.11.022
    [14]
    Chen Xuewen, Zhang Bo, Du Yuqing, et al. Constitutive model parameter identification based on optimization method and formability analysis for Ti6Al4V alloy[J]. Materials, 2022,15(5):1748. doi: 10.3390/ma15051748
    [15]
    Wen Feijuan, Wen Qifei, Long Zhang, et al. Hot deformation behavior and constitutive model of TC17 titanium[J]. Alloy Materials for Mechanical Engineering, 2023,47(8):86-92, 99. (温飞娟, 温奇飞, 龙樟, 等. TC17钛合金热变形行为及本构模型[J]. 机械工程材料, 2023,47(8):86-92, 99. doi: 10.11973/jxgccl202308014

    Wen Feijuan, Wen Qifei, Long Zhang, et al. Hot deformation behavior and constitutive model of TC17 titanium[J]. Alloy Materials for Mechanical Engineering, 2023, 47(8): 86-92, 99. doi: 10.11973/jxgccl202308014
    [16]
    Song Gao, Sang Ye, Li Qihan, et al. Constitutive modeling and microstructure research on the deformation mechanism of Ti-6Al-4V alloy under hot forming condition[J]. Journal of Alloys and Compounds, 2021, 892: 162128.
    [17]
    Chen Can, Chen Minghe, Xie Lansheng, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering, 2019,48(3):827-834. (陈灿, 陈明和, 谢兰生, 等. TA32新型钛合金高温流变行为及本构模型研究[J]. 稀有金属材料与工程, 2019,48(3):827-834.

    Chen Can, Chen Minghe, Xie Lansheng, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering, 2019, 48(3): 827-834.
    [18]
    Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson–Cook and modified Zerilli–Armstrong models[J]. Materials Science & Engineering A, 2014,612:71-79.
    [19]
    Samantaray D, Mandal S, Borah U, et al. A thermo-viscop-lastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009,526(1-2):1-6. doi: 10.1016/j.msea.2009.08.009
    [20]
    Mirzaie T, Mirzadeh H, Cabrera J M. A simple Zerilli–Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels[J]. Mechanics of Materials, 2016,94:38-45. doi: 10.1016/j.mechmat.2015.11.013
    [21]
    Jia Haishen, Xia Shiyu, Zhang Jilin, et al. Study on rheological behavior and constitutive model of TA 17 titanium alloy at high strain rate[J]. Journal of Mechanical Strength, 2022,44(4):837-844. (贾海深, 夏世玉, 张继林, 等. 高应变率下TA17钛合金的流变行为及其本构模型研究[J]. 机械强度, 2022,44(4):837-844.

    Jia Haishen, Xia Shiyu, Zhang Jilin, et al. Study on rheological behavior and constitutive model of TA 17 titanium alloy at high strain rate[J]. Journal of Mechanical Strength, 2022, 44(4): 837-844.
    [22]
    Shayanpoor A A, Rezaei Ashtiani H R. The phenomeno-logical and physical constitutive analysis of hot fow behavior of Al/Cu bimetal composite[J]. Applied Physics A, 2022,128:636. doi: 10.1007/s00339-022-05769-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (101) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return