Citation: | Shen Jiancheng, Jia Haishen, Zhang Jilin, Luo Wencui, Yi Xiangbin. Prediction of high temperature rheological behavior of TC4 titanium alloy based on Z-A constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 76-83. doi: 10.7513/j.issn.1004-7638.2024.04.012 |
[1] |
Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020,10(6):705. doi: 10.3390/met10060705
|
[2] |
Ji Ce, Huang Huagui, Wang Tao, et al. Recent advances and future trends in processing methods and characterization technologies of aluminum foam composite structures: A review[J]. Journal of Manufacturing Processes, 2023, 93: 116-152.
|
[3] |
Jin Hexi, Wei Kexiang, Li Jianming, et al. Research progress of titanium alloys for aviation[J]. The Chinese Journal of Nonferrous Metals, 2015,25(2):280-292. (金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015,25(2):280-292.
Jin Hexi, Wei Kexiang, Li Jianming, et al. Research progress of titanium alloys for aviation[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292.
|
[4] |
Zhu Zhishou. Research status and development of titanium alloy technology for aviation in China[J]. Journal of Aeronautical Materials, 2014,34(4):44-50. (朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014,34(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004
Zhu Zhishou. Research status and development of titanium alloy technology for aviation in China[J]. Journal of Aeronautical Materials, 2014, 34(4): 44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004
|
[5] |
Zhang Bi, Yang Fulun, Wang Jiexin. Fundamental aspects in vibration-assisted tapping[J]. Journal of Materials Processing Technology, 2003,132(1-3):345-352. doi: 10.1016/S0924-0136(02)00950-0
|
[6] |
Hor A, Morel F, Lebrun J, et al. An experimental investigation of the behaviour of steels over large temperature and strain rate ranges[J]. International Journal of Mechanical Sciences, 2013,67:108-122. doi: 10.1016/j.ijmecsci.2013.01.003
|
[7] |
Muszka K, Dziedzic D, Madej L, et al. The development of ultrafine-grained hot rolling products using advanced thermomechanical processing[J]. Materials Science and Engineering A, 2014,610:290-296. doi: 10.1016/j.msea.2014.05.051
|
[8] |
Ma Xiong, Zeng Weidong, Sun Yu, et al. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure[J]. Materials Science and Engineering A, 2012,538:182-189. doi: 10.1016/j.msea.2012.01.027
|
[9] |
Wu Shuaihuai, Zhu Baohong, Jiang Wei, et al. Hot deformation behavior and microstructure evolution of a novel Al-Zn-Mg-Li-Cu alloy[J]. Materials, 2022,15(19):6769. doi: 10.3390/ma15196769
|
[10] |
Zhang Ming, Liu Xianli, Yue Caixu. Study on constitutive model for titanium alloy by coupling strain-temperature and dynamic crystallization mechanical[J]. Science and Technology for Aerospace Engineering, 2021,40(11):1641-1648. (张铭, 刘献礼, 岳彩旭, 等. 考虑应变-温度耦合与高温动态结晶的钛合金本构模型研究[J]. 机械科学与技术, 2021,40(11):1641-1648.
Zhang Ming, Liu Xianli, Yue Caixu. Study on constitutive model for titanium alloy by coupling strain-temperature and dynamic crystallization mechanical[J]. Science and Technology for Aerospace Engineering, 2021, 40(11): 1641-1648.
|
[11] |
Shin H, Ju Y, Choi M K, et al. Flow stress description characteristics of some constitutive models at wide strain rates and temperatures[J]. Technologies, 2022,10(2):52. doi: 10.3390/technologies10020052
|
[12] |
Jiang Ziwei, Yang Dong, Chen Jianbin. Dynamic constitutive model of titanium alloy Ti-6A1-4V for high speed cutting: A review[J]. Journal of Aeronautical Materials, 2023,43(4):55-67. (姜紫薇, 杨东, 陈建彬. 面向高速切削的钛合金Ti-6Al-4V动态本构模型: 综述[J]. 航空材料学报, 2023,43(4):55-67. doi: 10.11868/j.issn.1005-5053.2022.000169
Jiang Ziwei, Yang Dong, Chen Jianbin. Dynamic constitutive model of titanium alloy Ti-6A1-4V for high speed cutting: A review[J]. Journal of Aeronautical Materials, 2023, 43(4): 55-67. doi: 10.11868/j.issn.1005-5053.2022.000169
|
[13] |
Feng Qiuyuan, Guo Jialin, Yang Jun, et al. Hot deformation behavior of Ti60 high temperature titanium alloy I: Constitutive equations[J]. Journal of Plasticity Engineering, 2021,28(11):158-166. (冯秋元, 郭佳林, 杨军, 等. Ti60高温钛合金的热变形行为 Ⅰ: 本构方程[J]. 塑性工程学报, 2021,28(11):158-166. doi: 10.3969/j.issn.1007-2012.2021.11.022
Feng Qiuyuan, Guo Jialin, Yang Jun, et al. Hot deformation behavior of Ti60 high temperature titanium alloy I: Constitutive equations[J]. Journal of Plasticity Engineering, 2021, 28(11): 158-166. doi: 10.3969/j.issn.1007-2012.2021.11.022
|
[14] |
Chen Xuewen, Zhang Bo, Du Yuqing, et al. Constitutive model parameter identification based on optimization method and formability analysis for Ti6Al4V alloy[J]. Materials, 2022,15(5):1748. doi: 10.3390/ma15051748
|
[15] |
Wen Feijuan, Wen Qifei, Long Zhang, et al. Hot deformation behavior and constitutive model of TC17 titanium[J]. Alloy Materials for Mechanical Engineering, 2023,47(8):86-92, 99. (温飞娟, 温奇飞, 龙樟, 等. TC17钛合金热变形行为及本构模型[J]. 机械工程材料, 2023,47(8):86-92, 99. doi: 10.11973/jxgccl202308014
Wen Feijuan, Wen Qifei, Long Zhang, et al. Hot deformation behavior and constitutive model of TC17 titanium[J]. Alloy Materials for Mechanical Engineering, 2023, 47(8): 86-92, 99. doi: 10.11973/jxgccl202308014
|
[16] |
Song Gao, Sang Ye, Li Qihan, et al. Constitutive modeling and microstructure research on the deformation mechanism of Ti-6Al-4V alloy under hot forming condition[J]. Journal of Alloys and Compounds, 2021, 892: 162128.
|
[17] |
Chen Can, Chen Minghe, Xie Lansheng, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering, 2019,48(3):827-834. (陈灿, 陈明和, 谢兰生, 等. TA32新型钛合金高温流变行为及本构模型研究[J]. 稀有金属材料与工程, 2019,48(3):827-834.
Chen Can, Chen Minghe, Xie Lansheng, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering, 2019, 48(3): 827-834.
|
[18] |
Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson–Cook and modified Zerilli–Armstrong models[J]. Materials Science & Engineering A, 2014,612:71-79.
|
[19] |
Samantaray D, Mandal S, Borah U, et al. A thermo-viscop-lastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009,526(1-2):1-6. doi: 10.1016/j.msea.2009.08.009
|
[20] |
Mirzaie T, Mirzadeh H, Cabrera J M. A simple Zerilli–Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels[J]. Mechanics of Materials, 2016,94:38-45. doi: 10.1016/j.mechmat.2015.11.013
|
[21] |
Jia Haishen, Xia Shiyu, Zhang Jilin, et al. Study on rheological behavior and constitutive model of TA 17 titanium alloy at high strain rate[J]. Journal of Mechanical Strength, 2022,44(4):837-844. (贾海深, 夏世玉, 张继林, 等. 高应变率下TA17钛合金的流变行为及其本构模型研究[J]. 机械强度, 2022,44(4):837-844.
Jia Haishen, Xia Shiyu, Zhang Jilin, et al. Study on rheological behavior and constitutive model of TA 17 titanium alloy at high strain rate[J]. Journal of Mechanical Strength, 2022, 44(4): 837-844.
|
[22] |
Shayanpoor A A, Rezaei Ashtiani H R. The phenomeno-logical and physical constitutive analysis of hot fow behavior of Al/Cu bimetal composite[J]. Applied Physics A, 2022,128:636. doi: 10.1007/s00339-022-05769-6
|