Sun Hao. Phase transformation mechanism of Ti-6Al-4V titanium alloy induced by tensile deformation[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 62-67. doi: 10.7513/j.issn.1004-7638.2024.04.010
Citation: Sun Hao. Phase transformation mechanism of Ti-6Al-4V titanium alloy induced by tensile deformation[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 62-67. doi: 10.7513/j.issn.1004-7638.2024.04.010

Phase transformation mechanism of Ti-6Al-4V titanium alloy induced by tensile deformation

doi: 10.7513/j.issn.1004-7638.2024.04.010
  • Received Date: 2023-10-17
  • Publish Date: 2024-08-30
  • Phase transition behavior plays a crucial role on the plastic deformation and mechanical properties of titanium alloy. Therefore, it is very necessary to study the phase transition behavior and further reveal the corresponding mechanism of titanium alloy. In this paper, a novel heat treatment process was successfully used to introduce a fine β grain martensite structure into Ti-6Al-4V titanium alloy. Deformation-induced HCP phase to FCC phase transition behavior under tensile loading conditions was discovered, and the corresponding phase transition mechanism was revealed. The crystallographic orientation relationship between the HCP phase and the newly formed FCC phase is: (0002)HCP || $(11\bar1 )$FCC and $<2\bar1\bar10 >$HCP || <011> FCC. The phase transition mechanism is proposed based on the crystallographic orientation relationship between the two phases: 1/3$<10\bar10 > $ type Shockley partial dislocations slip on every two (0001) atomic basal planes. This phase transition mechanism was further verified by first principles that calculated the change of (0001)$<10\bar10 >$ stacking fault energy during HCP to FCC phase transition.
  • [1]
    Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844-879. doi: 10.1016/j.actamat.2012.10.043
    [2]
    Lütjering G G, Williams J C. Titanium[M]. Springer, 2007.
    [3]
    Lei Ting. Titanium and titanium alloy[M]. Beijing: Metallurgical Industry Press, 2018. (雷霆. 钛及钛合金[M]. 北京: 冶金工业出版社, 2018.

    Lei Ting. Titanium and titanium alloy[M]. Beijing: Metallurgical Industry Press, 2018.
    [4]
    Lainé S J, Knowles K M, Doorbar P J, et al. Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V[J]. Acta Materialia, 2017,123:350-361. doi: 10.1016/j.actamat.2016.10.044
    [5]
    Castany P, Pettinari Sturmel F, Crestou J, et al. Experimental study of dislocation mobility in a Ti–6Al–4V alloy[J]. Acta Materialia, 2007,55(18):6284-6291. doi: 10.1016/j.actamat.2007.07.032
    [6]
    Guo Zhouqiang, Ge Liling, Yuan Hang, et al. Surface nano-crystallization of TC4 titanium alloy and its thermal stability[J]. Transactions of Materials and Heat Treatment, 2012,33(3):5. (郭周强, 葛利玲, 袁航, 等. 钛合金TC4表面纳米化及其热稳定性[J]. 材料热处理学报, 2012,33(3):5.

    Guo Zhouqiang, Ge Liling, Yuan Hang, et al. Surface nano-crystallization of TC4 titanium alloy and its thermal stability[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 5.
    [7]
    Sun J L, Trimby P W, Si X, et al. Nano twins in ultrafine-grained Ti processed by dynamic plastic deformation[J]. Scripta Materialia, 2013,68(7):475-478. doi: 10.1016/j.scriptamat.2012.11.025
    [8]
    Bao L, Lecomte J, Schuman C, et al. Study of plastic deformation in hexagonal metals by interrupted in-situ EBSD measurement[J]. Advanced Engineering Materials, 2010,12(10):1053-1059. doi: 10.1002/adem.201000074
    [9]
    Li Y, Ni S, Liu Y, et al. Phase transition induced high strength and large ductility of a hot rolled near β Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Scripta Materialia, 2019,170:34-37. doi: 10.1016/j.scriptamat.2019.05.031
    [10]
    Liu Y G, Li M Q, Liu H J. Deformation induced face-centered cubic titanium and its twinning behavior in Ti–6Al–4V[J]. Scripta Materialia, 2016,119:5-8. doi: 10.1016/j.scriptamat.2016.03.018
    [11]
    Ao N, Liu D, Liu C, et al. Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior[J]. Materials Characterization, 2018,145:527-533. doi: 10.1016/j.matchar.2018.09.004
    [12]
    Shahmir H, Langdon T G. Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys[J]. Acta Materialia, 2017,141:419-426. doi: 10.1016/j.actamat.2017.09.018
    [13]
    Kwasniak P, Garbacz H, Kurzydlowski K J. Solid solution strengthening of hexagonal titanium alloys: Restoring forces and stacking faults calculated from first principles[J]. Acta Materialia, 2016, 102: 304-314.
    [14]
    Matsumoto H, Yoneda H, Sato K, et al. Room-temperature ductility of Ti-6Al-4V alloy with α′ martensite microstructure[J]. Materials Science and Engineering: A, 2011,528(3):1512-1520. doi: 10.1016/j.msea.2010.10.070
    [15]
    Chong Y, Bhattacharjee T, Yi J, et al. Mechanical properties of fully martensite microstructure in Ti-6Al-4V alloy transformed from refined beta grains obtained by rapid heat treatment (RHT)[J]. Scripta Materialia, 2017,138:66-70. doi: 10.1016/j.scriptamat.2017.05.038
    [16]
    Chao Q, Hodgson P D, Beladi H. Ultrafine grain formation in a Ti-6Al-4V alloy by thermomechanical processing of a martensitic microstructure[J]. Metallurgical and Materials Transactions A, 2014,45(5):2659-2671. doi: 10.1007/s11661-014-2205-5
    [17]
    Zhang Runqi, Cai Qin, Li Zhuang, et al. Microstructural evolution of Ti-6Al-4V alloy during water quenching under different processing conditions[J]. Rare Metal Materials and Engineering, 2020,49(9):3005-3011. (张润奇, 蔡钦, 李壮, 等. Ti-6Al-4V合金在不同工艺条件下水淬后的组织演变[J]. 稀有金属材料与工程, 2020,49(9):3005-3011.

    Zhang Runqi, Cai Qin, Li Zhuang, et al. Microstructural evolution of Ti-6Al-4V alloy during water quenching under different processing conditions[J]. Rare Metal Materials and Engineering, 2020, 49(9): 3005-3011.
    [18]
    Zhao H, Song M, Ni S, et al. Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf[J]. Acta Materialia, 2017,131:271-279. doi: 10.1016/j.actamat.2017.03.058
    [19]
    Wei B, Ni S, Liu Y, et al. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling[J]. Journal of Materials Science & Technology, 2020,49:211-223.
    [20]
    Chen P, Wang F, Li B. Transitory phase transformations during{101-2} twinning in titanium[J]. Acta Materialia, 2019,171:65-78. doi: 10.1016/j.actamat.2019.04.002
    [21]
    Jiang S, Huang L, Gao X, et al. Interstitial carbon induced FCC-Ti exhibiting ultrahigh strength in a Ti37Nb28Mo28-C7 complex concentrated alloy[J]. Acta Materialia, 2021,203:116456. doi: 10.1016/j.actamat.2020.10.075
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (79) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return