He Yilin, Xu Jianlin, Ma Zhanshan, Pang Zhongya, Zhu Fuxing, Zou Xingli, Lu Xionggang. Study on the influences of melt components on the physical properties of molten salt chlorination system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 8-15, 28. doi: 10.7513/j.issn.1004-7638.2024.04.002
Citation: He Yilin, Xu Jianlin, Ma Zhanshan, Pang Zhongya, Zhu Fuxing, Zou Xingli, Lu Xionggang. Study on the influences of melt components on the physical properties of molten salt chlorination system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 8-15, 28. doi: 10.7513/j.issn.1004-7638.2024.04.002

Study on the influences of melt components on the physical properties of molten salt chlorination system

doi: 10.7513/j.issn.1004-7638.2024.04.002
  • Received Date: 2024-04-19
  • Publish Date: 2024-08-30
  • The physical properties of chloride molten salt are very important for the preparation efficiency of titanium tetrachloride produced by molten salt chlorination. To investigate the influence of changes in chloride-containing molten salt composition on the physical properties of molten salt systems, this study conducted the physical property tests including conductivity and viscosity on normal raw salt, foam salt and filtered molten salt. Furthermore, XRD analysis and chemical composition analysis were also performed. Based on the component ratios in actual production and chemical analysis results, an orthogonal experiment with three factors including FeCl2, FeCl3, and MgCl2 : NaCl was designed to study the changes of physical properties of molten salt systems under different component ratios. The results indicate that the FeCl2 content has the most significant effect on the conductivity of the molten salt system, with an increase of 5% FeCl2 resulting in a 0.33 S/cm increase in overall molten salt conductivity. The FeCl3 content has the greatest impact on the viscosity of the molten salt system, with the effect being most pronounced within the 10% to 15% range of its composition. Finally, utilizing a comprehensive scoring method, the optimal chlorinated component scheme for molten salt was determined to be CaCl2 4%, FeCl2 20%, FeCl3 5% and MgCl2 : NaCl = 1 : 1.
  • [1]
    Yang Fang, Li Yanli, Shen Chengxiu, et al. Research progress on preparation and forming technology of titanium and titanium alloy powder[J]. Powder Metallurgy Technology, 2023,41(4):330-337. (杨芳, 李延丽, 申承秀, 等. 钛及钛合金粉末制备与成形工艺研究进展[J]. 粉末冶金技术, 2023,41(4):330-337.

    Yang Fang, Li Yanli, Shen Chengxiu, et al. Research progress on preparation and forming technology of titanium and titanium alloy powder[J]. Powder Metallurgy Technology, 2023, 41(4): 330-337.
    [2]
    Isaac M M, Mxolisi B S. Effects of porosity on the corrosion behaviour of PM-fabricated titanium foams for biomedical applications[J]. International Journal of Electrochemical Science, 2024,19(3):100495. doi: 10.1016/j.ijoes.2024.100495
    [3]
    Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Research progress on global vanadium-titanium-magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4):1-11. (杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4):1-11. doi: 10.3969/j.issn.1000-6532.2023.04.001

    Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Research progress on global vanadium-titanium-magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 1-11. doi: 10.3969/j.issn.1000-6532.2023.04.001
    [4]
    Fu Ganghua, Yao Hongguo, Chen Feng, et al. Research progress on comprehensive utilization of chlorination waste slag of molten salt[J]. Multipurpose Utilization of Mineral Resources, 2023(3):112-118. (付刚华, 姚洪国, 陈凤, 等. 熔盐氯化废渣综合利用研究进展[J]. 矿产综合利用, 2023(3):112-118. doi: 10.3969/j.issn.1000-6532.2023.03.019

    Fu Ganghua, Yao Hongguo, Chen Feng, et al. Research progress on comprehensive utilization of chlorination waste slag of molten salt[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 112-118. doi: 10.3969/j.issn.1000-6532.2023.03.019
    [5]
    Li Liang. Research progress on the application and technology of titanium tetrachloride at home and abroad[J]. Light Metals, 2021(10):42-48. (李亮. 国内外四氯化钛的应用及工艺技术研究进展[J]. 轻金属, 2021(10):42-48.

    Li Liang. Research progress on the application and technology of titanium tetrachloride at home and abroad[J]. Light Metals, 2021(10): 42-48.
    [6]
    Luo Zaiguo, Yang Zhen, Yang Xiaodong, et al. Study on the production of TiCl4 by boiling chlorination furnace without sieve plate[J]. Yunnan Metallurgy, 2018,47(2):65-68. (罗在国, 杨振, 杨晓东, 等. 无筛板沸腾氯化炉生产TiCl4工艺研究[J]. 云南冶金, 2018,47(2):65-68. doi: 10.3969/j.issn.1006-0308.2018.02.010

    Luo Zaiguo, Yang Zhen, Yang Xiaodong, et al. Study on the production of TiCl4 by boiling chlorination furnace without sieve plate[J]. Yunnan Metallurgy, 2018, 47(2): 65-68. doi: 10.3969/j.issn.1006-0308.2018.02.010
    [7]
    Wang Jun, Zhao Yingtao, Cao Li, et al. Numerical simulation of boiling chlorinated gas-solid two-phase flow in a spouted bed of titanium slag[J]. Conservation and Utilization of Mineral Resources, 2017(6):66-74. (王军, 赵英涛, 曹丽, 等. 钛渣喷动床沸腾氯化气固两相流数值模拟[J]. 矿产保护与利用, 2017(6):66-74.

    Wang Jun, Zhao Yingtao, Cao Li, et al. Numerical simulation of boiling chlorinated gas-solid two-phase flow in a spouted bed of titanium slag[J]. Conservation and Utilization of Mineral Resources, 2017(6): 66-74.
    [8]
    Bordbar H, Yousefi A A, Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores: A review[J]. Polyolefins Journal, 2017,4(2):149-173.
    [9]
    Kroll W. The production of ductile titanium[J]. Journal of the Electrochemical Society, 1940,78(1):35-47.
    [10]
    Qi Manfu. Analysis of titanium tetrachloride production technology[J]. Chemical Enterprise Management, 2022(3):55-57. (齐满富. 四氯化钛生产工艺分析[J]. 化工管理, 2022(3):55-57.

    Qi Manfu. Analysis of titanium tetrachloride production technology[J]. Chemical Enterprise Management, 2022(3): 55-57.
    [11]
    Yang Xinping, Wang Xiufeng. Research progress in conductivity measurement of high-temperature melt[J]. China Ceramics, 2010,46(11):12-16. (杨新平, 王秀峰. 高温熔体电导率测试研究进展[J]. 中国陶瓷, 2010,46(11):12-16.

    Yang Xinping, Wang Xiufeng. Research progress in conductivity measurement of high-temperature melt[J]. China Ceramics, 2010, 46(11): 12-16.
    [12]
    Kan H M, Wang Z W, Ban Y G, et al. Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte[J]. Transactions of Nonferrous Metals Society of China, 2007(1):181-186.
    [13]
    Shigeta H, Hidehiro H, Kazumi O. Electrical conductivity of molten slags for electro-slag remelting[J]. Transactions of the Iron & Steel Institute of Japan, 2006,23(12):1053-1058.
    [14]
    Long Yao, Yu Zhefeng, Wang Xin, et al. Research progress of viscosity and measurement technology of high-temperature melt[J]. Materials Research and Application, 2023,17(3):483-494. (龙耀, 于哲峰, 王昕, 等. 高温熔体粘度及其测量技术的研究进展[J]. 材料研究与应用, 2023,17(3):483-494.

    Long Yao, Yu Zhefeng, Wang Xin, et al. Research progress of viscosity and measurement technology of high-temperature melt[J]. Materials Research and Application, 2023, 17(3): 483-494.
    [15]
    Shao Hongfei, Liu Yuanjun, Ren Wanjie, et al. Research progress of viscosity measurement methods and reference materials for non-Newtonian fluids[J]. Journal of Astronautic Metrology and Measurement, 2019,39(Z1):1-5. (邵鸿飞, 刘元俊, 任万杰, 等. 非牛顿流体粘度测试方法及标准物质研究进展[J]. 宇航计测技术, 2019,39(Z1):1-5.

    Shao Hongfei, Liu Yuanjun, Ren Wanjie, et al. Research progress of viscosity measurement methods and reference materials for non-Newtonian fluids[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(Z1): 1-5.
    [16]
    Wang Xiaojie, Zhu Shanshan, Wang Xiaopo, et al. High pressure liquid viscosity test system for falling body method[J]. Journal of Engineering Thermophysics, 2020,41(4):788-791. (王小杰, 朱山杉, 王晓坡, 等. 落体法流体高压液相黏度实验系统[J]. 工程热物理学报, 2020,41(4):788-791.

    Wang Xiaojie, Zhu Shanshan, Wang Xiaopo, et al. High pressure liquid viscosity test system for falling body method[J]. Journal of Engineering Thermophysics, 2020, 41(4): 788-791.
    [17]
    Wei Xiaolan, Xie Pei, Wang Weilong, et al. Calculation of phase diagram of ternary chloride system containing calcium and thermal stability of molten salt[J]. CIESC Journal, 2021,72(6):3074-3083. (魏小兰, 谢佩, 王维龙, 等. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021,72(6):3074-3083.

    Wei Xiaolan, Xie Pei, Wang Weilong, et al. Calculation of phase diagram of ternary chloride system containing calcium and thermal stability of molten salt[J]. CIESC Journal, 2021, 72(6): 3074-3083.
    [18]
    Yin Yue. Thermal stability of chloride molten salt and thermal properties of molten salt enhancement[D]. Guangzhou: South China University of Technology, 2018. (尹月. 氯化物熔盐热稳定性与熔盐热物性强化[D]. 广州: 华南理工大学, 2018.

    Yin Yue. Thermal stability of chloride molten salt and thermal properties of molten salt enhancement[D]. Guangzhou: South China University of Technology, 2018.
    [19]
    Wu J, Ni H, Liang W, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science, 2019,170:109051. doi: 10.1016/j.commatsci.2019.05.049
    [20]
    Chen Feng, Wen Yuekai, Guo Yufeng, et al. Research status of viscosity characteristics of chlorinated molten salt system[J]. Inorganic Chemicals Industry, 2022,54(6):1-5. (陈凤, 问悦凯, 郭宇峰, 等. 氯化熔盐体系黏度特性研究现状[J]. 无机盐工业, 2022,54(6):1-5.

    Chen Feng, Wen Yuekai, Guo Yufeng, et al. Research status of viscosity characteristics of chlorinated molten salt system[J]. Inorganic Chemicals Industry, 2022, 54(6): 1-5.
    [21]
    Fan Jianfeng, Yuan Zhangfu, Li Jing, et al. Viscosity of molten CaCl2-MgCl2 system[J]. The Chinses Journal of Nonferrous Metals, 2004(10):1759-1762. (范建峰, 袁章福, 李晶, 等. 熔融CaCl2-MgCl2体系的粘度[J]. 中国有色金属学报, 2004(10):1759-1762. doi: 10.3321/j.issn:1004-0609.2004.10.024

    Fan Jianfeng, Yuan Zhangfu, Li Jing, et al. Viscosity of molten CaCl2-MgCl2 system[J]. The Chinses Journal of Nonferrous Metals, 2004(10): 1759-1762. doi: 10.3321/j.issn:1004-0609.2004.10.024
    [22]
    Wei Xiaolan, Xie Pei, Zhang Xuechuan, et al. Study on preparation and thermophysical properties of chloride molten salt materials[J]. CIESC Journal, 2020,71(5):2423-2431. (魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020,71(5):2423-2431.

    Wei Xiaolan, Xie Pei, Zhang Xuechuan, et al. Study on preparation and thermophysical properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (108) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return