Wang Yansong, Liu Fuguang, Mi Zihao, Han Tianpeng, Zhang Lei, Yang Erjuan, Ba Teer. Study on microstructure and mechanical properties of welded joints of 15Cr1Mo1V steel pipeline in service[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 198-204. doi: 10.7513/j.issn.1004-7638.2024.02.028
Citation: Qiu Xingyu, Li Yechao, Fang Hongmei, Cao Lili, Zhang Ya, Yang Dengke. Study on evolution and mechanism of adiabatic shear bands of cold rolled titanium[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 79-84. doi: 10.7513/j.issn.1004-7638.2024.02.012

Study on evolution and mechanism of adiabatic shear bands of cold rolled titanium

doi: 10.7513/j.issn.1004-7638.2024.02.012
  • Received Date: 2022-10-17
    Available Online: 2024-05-14
  • Publish Date: 2024-04-30
  • In order to study the evolution law and mechanism of titanium adiabatic localization shear band under cold rolling conditions, conclusions were drawn by exploring and analyzing the cold rolling process. Firstly, the morphology of the shear band was analyzed, followed by the microhardness, and finally the evolution of local shear strain and local temperature increment. The results show that after deformation from 50% to 83% in cold rolling, the edge of the cold rolled titanium plate first forms a deformation zone, in which a local shear band with an angle of 40° to the rolling direction is formed, and the width of the shear band is about 25 μm. In the center of the shear band, there are ultrafine nanocrystals with the size of 20-160 nm and the average size of 70 nm. Through the microhardness test reslut, it can be concluded that the hardness in the center of the shear band is significantly higher than that around the matrix. The calculated shear strain and maximum temperature increment in the shear zone are much higher than that of the whole deformed sample localized shear bands originate from the geometrical instability of the microstructure rather than thermal disturbance.
  • [1]
    Wright T W. The physics and mathematics of adiabatic shear bands[M]. Cambridge: Cambridge University Press, 2002.
    [2]
    Xue Q, Gray G T. Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior[J]. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science, 2006(8):37A.
    [3]
    Rittel D, Wang Z G, Merzer M. Adiabatic shear failure and dynamic stored energy of cold work[J]. Phys. Rev. Lett, 2006(96):75502.
    [4]
    Rowe G W. An introduction to the principles of metalworking[M]. Edward Arnold, 1965.
    [5]
    Huang Zikun, Sun Wei. Formation mechanism of adiabatic shear band in dynamic plastic deformation of titanium alloy[J]. Materials Reports, 2021,35(3):3122−3128. (黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021,35(3):3122−3128.

    Huang Zikun, Sun Wei. Formation mechanism of adiabatic shear band in dynamic plastic deformation of titanium alloy[J]. Materials Reports, 2021, 35(3): 3122−3128.
    [6]
    Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021,35(4):100−127. (胡博, 郭亚洲, 魏秋明, 等. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021,35(4):100−127.

    Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 100−127.
    [7]
    Liu Xingfa, Chen Yan, Dai Lanhong. Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6): 49-57. (刘兴发, 陈艳, 戴兰宏. 内生晶体非晶合金复合材料变形场演化与剪切带行为[J]. 中国科学: 物理学 力学 天文学, 2020, 50(6): 49-57.

    Liu Xingfa, Chen Yan, Dai Lanhong. Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6): 49-57.
    [8]
    Li Shuaikang, Liu Xiaoyan, Yang Xirong, et al. Dynamic mechanical properties and adiabatic shear behavior of ultrafine grained materials[J]. Journal of Plasticity Engineering, 2022,29(6):1−8. (李帅康, 刘晓燕, 杨西荣, 等. 超细晶材料动态力学性能及绝热剪切行为[J]. 塑性工程学报, 2022,29(6):1−8.

    Li Shuaikang, Liu Xiaoyan, Yang Xirong, et al. Dynamic mechanical properties and adiabatic shear behavior of ultrafine grained materials[J]. Journal of Plasticity Engineering, 2022, 29(6): 1−8.
    [9]
    Yang Hongbin. Study on the mechanical behavior andadiabatic shearing sensitivity of TC21 titaniumalloyunder different heat treatments[D]. Kunming: Yunnan Normal University, 2017. (杨红斌. 不同热处理条件下TC21钛合金的力学行为及绝热剪切敏感性研究[D]. 昆明: 云南师范大学, 2017.

    Yang Hongbin. Study on the mechanical behavior andadiabatic shearing sensitivity of TC21 titaniumalloyunder different heat treatments[D]. Kunming: Yunnan Normal University, 2017.
    [10]
    Sun Qinghai. Adiabatic shearing mechanism of Ti-6Al-4V[D]. Shenyang: Shenyang University of Technology, 2016. (孙庆海. Ti-6Al-4V绝热剪切机理[D]. 沈阳: 沈阳工业大学, 2016.

    Sun Qinghai. Adiabatic shearing mechanism of Ti-6Al-4V[D]. Shenyang: Shenyang University of Technology, 2016.
    [11]
    Li Yanxing, Wang Lin, Yan Zhiwei, et al. Research on adiabatic shear behavior of Ti6321 alloy with different microstructures[J]. Titanium Industry Progress, 2021,38(6):12−17. (李严星, 王琳, 闫志维, 等. 不 同组织Ti6321合金的绝热剪切行为研究[J]. 钛工业进展, 2021,38(6):12−17.

    Li Yanxing, Wang Lin, Yan Zhiwei, et al. Research on adiabatic shear behavior of Ti6321 alloy with different microstructures[J]. Titanium Industry Progress, 2021, 38(6): 12−17.
    [12]
    Li Jianguo, Dou Qingbo, Suo Tao. Advances in formation mechanisms and multiscale simulations of adiabatic shear bands in metallic materials[J]. Chinese Science Bulletin, 2021, 66(32): 4081-4097. (李建国, 豆清波, 索涛. 金属材料绝热剪切带形成机制及多尺度模拟研究进展[J]. 科学通报, 2021, 66(32): 4081-4097.

    Li Jianguo, Dou Qingbo, Suo Tao. Advances in formation mechanisms and multiscale simulations of adiabatic shear bands in metallic materials[J]. Chinese Science Bulletin, 2021, 66(32): 4081-4097.
    [13]
    Yan Yingliang, Zhang Pengfei. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2020,44(10):76−80,86. (闫迎亮, 张鹏飞. TC4钛合金绝热剪切行为的数值模拟[J]. 机械工程材料, 2020,44(10):76−80,86.

    Yan Yingliang, Zhang Pengfei. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2020, 44(10): 76−80,86.
    [14]
    Liu Chang, Jia Yi, Li Sha, et al. Study on microstructure and mechanical properties of cold rolled Ti/Al composite plate with corrugated roller[J]. Journal of Plasticity Engineering, 2020,27(12):66−72. (刘畅, 贾燚, 李莎, 等. 波纹辊冷轧钛/铝复合板的组织和力学性能研究[J]. 塑性工程学报, 2020,27(12):66−72.

    Liu Chang, Jia Yi, Li Sha, et al. Study on microstructure and mechanical properties of cold rolled Ti/Al composite plate with corrugated roller[J]. Journal of Plasticity Engineering, 2020, 27(12): 66−72.
    [15]
    Han Cong, Kong Bin. Analysis of common defects of cold-rolled titanium strip for titanium welded pipe[J]. World Nonferrous Metals, 2020(15):191−192. (韩聪, 孔玢. 钛焊管用冷轧钛带常见缺陷分析[J]. 世界有色金属, 2020(15):191−192.

    Han Cong, Kong Bin. Analysis of common defects of cold-rolled titanium strip for titanium welded pipe[J]. World Nonferrous Metals, 2020(15): 191−192.
    [16]
    Du Yuxuan, Yang Xinliang, Li Zushu, et al. Shear localization behavior in hat-shaped specimen of near-αTi-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1641-1655. (杜予晅, 杨新亮, 李祖树, 等. 近α型Ti-6Al-2Zr-1Mo-1V钛合金帽形试样在高应变速率下的剪切局部化行为[J]. 中国有色金属学报(英文版), 2021, 31(6): 1641-1655.

    Du Yuxuan, Yang Xinliang, Li Zushu, et al. Shear localization behavior in hat-shaped specimen of near-αTi-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1641-1655.
    [17]
    Nesterenko V F, Meyers M A, Wright T W. Self-organization in the initiation of adiabatic shear bands[J]. Acta Mater, 1998,46(1):327−340. doi: 10.1016/S1359-6454(97)00151-1
    [18]
    Xue Q, Mayers M A, Nesternko V F. Evolution in the patterning of adiabatic shear bands[J]. Acta Mater, 2002,620(1):567−570.
    [19]
    Lee W S, Lin C F, Chen T H, et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti–15Mo–5Zr–3Al alloy[J]. Mater Sci Eng A, 2008,475(2):172−184.
    [20]
    Yang D K, Cizek P, Hodgson P D, et al. Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium[J]. Acta Mater, 2010,58(13):4536−4548. doi: 10.1016/j.actamat.2010.05.007
  • Relative Articles

    [1]Li Xiaoyu, Tang Min, Liu Xin, Xiao Qiang, Qin Haixu. Studies on the influences of forging processes on the microstructures and properties of TA15 rods[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 57-64. doi: 10.7513/j.issn.1004-7638.2024.01.009
    [2]Wang Wei. Microstructures, properties and high-temp oxidation behaviors of Ti-45Al-8Nb-xHf alloys[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 91-97, 115. doi: 10.7513/j.issn.1004-7638.2024.05.012
    [3]Cheng Peixin, Xi Jinhui, Liu Jiao, Shi Lichao, Zhang Jianjian. Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
    [4]Jiang Tong, Wang Dafeng, Zou Shengguang, Zeng Haolin, Ma Bing, Chen Donggao. Study on the microstructures and properties of high speed laser welded joints of CP800 high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 182-187. doi: 10.7513/j.issn.1004-7638.2024.03.025
    [5]Zhao Qing, Chang Le, Zhou Changyu, Pu Jiang, Zheng Yixiang, Wang Zhicheng, Wang Bumei. Effects of pre-strain on tensile mechanical properties of commercially pure titanium TA2 welded joint[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010
    [6]Han Yunfei, Yuan Bingbing, Sun Bing, Liu Yihui, Qiao Haibin, Li Bobo. Effect of wall thickness and casting defects on microstructure and properties of ZTA15 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 84-88. doi: 10.7513/j.issn.1004-7638.2022.06.013
    [7]Wang Yinghu, Zheng Huaibei, Fang Yi, Liu Tingyao, Wang Liwei, Yao Bin. As-cast microstructure and mechanical properties of Y12Cr18Ni9 free-cutting steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 166-172. doi: 10.7513/j.issn.1004-7638.2022.06.025
    [8]Zhao Qing, Chang Le, Zheng Yixiang, Song Gaofeng, Ye Youjun, Xie Yi, Tan Xuelong. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
    [9]He Yifan, Chen Donggao, Zhang Long, Wang Dafeng, Shao Zhiwen, Ma Liangchao. Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
    [10]Ran Xing, Wang Zhe, Li Haibin, Lv Zhigang, Li Peijie. Influence of solution treatment on microstructure and mechanical properties of Ti6Al4V ELI titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 66-71. doi: 10.7513/j.issn.1004-7638.2021.06.008
    [11]Ma Shihui, Li Jiyuan. Influence of shaft shoulder diameter on microstructure and properties of Ti-6Al-4V friction stir welding joint[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 82-87. doi: 10.7513/j.issn.1004-7638.2021.03.012
    [12]Wang Yinghu. As-cast Microstructure and Mechanical Properties of Fe-12Mn-8.5Al-0.8C Low Density Steel[J]. IRON STEEL VANADIUM TITANIUM, 2020, 41(2): 169-174. doi: 10.7513/j.issn.1004-7638.2020.02.030
    [13]Zhen Weijing, Chen Jundong, Li Yongliang, Wang Fuming. Effect of Annealing Process on Microstructure and Mechanical Properties of 1 180 MPa Dual Phase Steel[J]. IRON STEEL VANADIUM TITANIUM, 2020, 41(4): 145-149. doi: 10.7513/j.issn.1004-7638.2020.04.026
    [14]Chen Jundong, Hao Ying, Tao Weichun, Li Yongliang. Effect of Nb and V on Microstructure and Mechanical Properties in Hot-stamping Steel[J]. IRON STEEL VANADIUM TITANIUM, 2019, 40(1): 136-141. doi: 10.7513/j.issn.1004-7638.2019.01.024
    [15]DONG Xian-chun, ZHAO Yang, HAN Ni-dan, ZHANG Yong-qiang, GUO Zi-feng. Microstructures and Properties of HR800CP Multiphase High Strength Steel Welded Joints[J]. IRON STEEL VANADIUM TITANIUM, 2018, 39(5): 144-148. doi: 10.7513/j.issn.1004-7638.2018.05.025
    [16]Chen You, Li Liejun, Huo Xiangdong, Chen Songjun, Peng Zhengwu. Effect of Heat Input on Microstructure and Impact Property of Heat Affected Zone for X100 Pipeline Steel[J]. IRON STEEL VANADIUM TITANIUM, 2016, 37(5): 133-138. doi: 10.7513/j.issn.1004-7638.2016.05.023
    [17]Zheng Zhiwang, Wang Minli, Li Xusheng. Effect of Coiling Temperatue and Cold-rolling Reduction on the Properties of High Strength IF Steel[J]. IRON STEEL VANADIUM TITANIUM, 2011, 32(3): 40-45,50.
    [18]Li Jun, Shi Qingnan, Li Zhengrong. Study on Microstructure and Properties of V-Ti-N Weathering Steel[J]. IRON STEEL VANADIUM TITANIUM, 2010, 31(1): 69-73.
    [19]Li Dadong. Discussing on Rupture Reason of Welded Rail during Transportation[J]. IRON STEEL VANADIUM TITANIUM, 2006, 27(2): 63-68.
    [20]Li Dadong, Ling Ping, Song Liqiu. STUDY OF WELDABILITY OF HOME-MADE SS41 STEEL[J]. IRON STEEL VANADIUM TITANIUM, 1996, 17(4): 19-23,27.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.5 %FULLTEXT: 20.5 %META: 71.9 %META: 71.9 %PDF: 7.6 %PDF: 7.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 54.5 %其他: 54.5 %其他: 0.3 %其他: 0.3 %Central District: 0.3 %Central District: 0.3 %北京: 0.7 %北京: 0.7 %廊坊: 0.3 %廊坊: 0.3 %成都: 22.9 %成都: 22.9 %杭州: 0.7 %杭州: 0.7 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %绵阳: 8.0 %绵阳: 8.0 %芒廷维尤: 6.6 %芒廷维尤: 6.6 %西宁: 1.4 %西宁: 1.4 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.4 %运城: 1.4 %重庆: 0.7 %重庆: 0.7 %长沙: 0.7 %长沙: 0.7 %其他其他Central District北京廊坊成都杭州沈阳洛阳绵阳芒廷维尤西宁贵阳运城重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (207) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return