Citation: | Qiu Xingyu, Li Yechao, Fang Hongmei, Cao Lili, Zhang Ya, Yang Dengke. Study on evolution and mechanism of adiabatic shear bands of cold rolled titanium[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 79-84. doi: 10.7513/j.issn.1004-7638.2024.02.012 |
[1] |
Wright T W. The physics and mathematics of adiabatic shear bands[M]. Cambridge: Cambridge University Press, 2002.
|
[2] |
Xue Q, Gray G T. Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior[J]. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science, 2006(8):37A.
|
[3] |
Rittel D, Wang Z G, Merzer M. Adiabatic shear failure and dynamic stored energy of cold work[J]. Phys. Rev. Lett, 2006(96):75502.
|
[4] |
Rowe G W. An introduction to the principles of metalworking[M]. Edward Arnold, 1965.
|
[5] |
Huang Zikun, Sun Wei. Formation mechanism of adiabatic shear band in dynamic plastic deformation of titanium alloy[J]. Materials Reports, 2021,35(3):3122−3128. (黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021,35(3):3122−3128.
Huang Zikun, Sun Wei. Formation mechanism of adiabatic shear band in dynamic plastic deformation of titanium alloy[J]. Materials Reports, 2021, 35(3): 3122−3128.
|
[6] |
Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021,35(4):100−127. (胡博, 郭亚洲, 魏秋明, 等. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021,35(4):100−127.
Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 100−127.
|
[7] |
Liu Xingfa, Chen Yan, Dai Lanhong. Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6): 49-57. (刘兴发, 陈艳, 戴兰宏. 内生晶体非晶合金复合材料变形场演化与剪切带行为[J]. 中国科学: 物理学 力学 天文学, 2020, 50(6): 49-57.
Liu Xingfa, Chen Yan, Dai Lanhong. Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6): 49-57.
|
[8] |
Li Shuaikang, Liu Xiaoyan, Yang Xirong, et al. Dynamic mechanical properties and adiabatic shear behavior of ultrafine grained materials[J]. Journal of Plasticity Engineering, 2022,29(6):1−8. (李帅康, 刘晓燕, 杨西荣, 等. 超细晶材料动态力学性能及绝热剪切行为[J]. 塑性工程学报, 2022,29(6):1−8.
Li Shuaikang, Liu Xiaoyan, Yang Xirong, et al. Dynamic mechanical properties and adiabatic shear behavior of ultrafine grained materials[J]. Journal of Plasticity Engineering, 2022, 29(6): 1−8.
|
[9] |
Yang Hongbin. Study on the mechanical behavior andadiabatic shearing sensitivity of TC21 titaniumalloyunder different heat treatments[D]. Kunming: Yunnan Normal University, 2017. (杨红斌. 不同热处理条件下TC21钛合金的力学行为及绝热剪切敏感性研究[D]. 昆明: 云南师范大学, 2017.
Yang Hongbin. Study on the mechanical behavior andadiabatic shearing sensitivity of TC21 titaniumalloyunder different heat treatments[D]. Kunming: Yunnan Normal University, 2017.
|
[10] |
Sun Qinghai. Adiabatic shearing mechanism of Ti-6Al-4V[D]. Shenyang: Shenyang University of Technology, 2016. (孙庆海. Ti-6Al-4V绝热剪切机理[D]. 沈阳: 沈阳工业大学, 2016.
Sun Qinghai. Adiabatic shearing mechanism of Ti-6Al-4V[D]. Shenyang: Shenyang University of Technology, 2016.
|
[11] |
Li Yanxing, Wang Lin, Yan Zhiwei, et al. Research on adiabatic shear behavior of Ti6321 alloy with different microstructures[J]. Titanium Industry Progress, 2021,38(6):12−17. (李严星, 王琳, 闫志维, 等. 不 同组织Ti6321合金的绝热剪切行为研究[J]. 钛工业进展, 2021,38(6):12−17.
Li Yanxing, Wang Lin, Yan Zhiwei, et al. Research on adiabatic shear behavior of Ti6321 alloy with different microstructures[J]. Titanium Industry Progress, 2021, 38(6): 12−17.
|
[12] |
Li Jianguo, Dou Qingbo, Suo Tao. Advances in formation mechanisms and multiscale simulations of adiabatic shear bands in metallic materials[J]. Chinese Science Bulletin, 2021, 66(32): 4081-4097. (李建国, 豆清波, 索涛. 金属材料绝热剪切带形成机制及多尺度模拟研究进展[J]. 科学通报, 2021, 66(32): 4081-4097.
Li Jianguo, Dou Qingbo, Suo Tao. Advances in formation mechanisms and multiscale simulations of adiabatic shear bands in metallic materials[J]. Chinese Science Bulletin, 2021, 66(32): 4081-4097.
|
[13] |
Yan Yingliang, Zhang Pengfei. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2020,44(10):76−80,86. (闫迎亮, 张鹏飞. TC4钛合金绝热剪切行为的数值模拟[J]. 机械工程材料, 2020,44(10):76−80,86.
Yan Yingliang, Zhang Pengfei. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2020, 44(10): 76−80,86.
|
[14] |
Liu Chang, Jia Yi, Li Sha, et al. Study on microstructure and mechanical properties of cold rolled Ti/Al composite plate with corrugated roller[J]. Journal of Plasticity Engineering, 2020,27(12):66−72. (刘畅, 贾燚, 李莎, 等. 波纹辊冷轧钛/铝复合板的组织和力学性能研究[J]. 塑性工程学报, 2020,27(12):66−72.
Liu Chang, Jia Yi, Li Sha, et al. Study on microstructure and mechanical properties of cold rolled Ti/Al composite plate with corrugated roller[J]. Journal of Plasticity Engineering, 2020, 27(12): 66−72.
|
[15] |
Han Cong, Kong Bin. Analysis of common defects of cold-rolled titanium strip for titanium welded pipe[J]. World Nonferrous Metals, 2020(15):191−192. (韩聪, 孔玢. 钛焊管用冷轧钛带常见缺陷分析[J]. 世界有色金属, 2020(15):191−192.
Han Cong, Kong Bin. Analysis of common defects of cold-rolled titanium strip for titanium welded pipe[J]. World Nonferrous Metals, 2020(15): 191−192.
|
[16] |
Du Yuxuan, Yang Xinliang, Li Zushu, et al. Shear localization behavior in hat-shaped specimen of near-αTi-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1641-1655. (杜予晅, 杨新亮, 李祖树, 等. 近α型Ti-6Al-2Zr-1Mo-1V钛合金帽形试样在高应变速率下的剪切局部化行为[J]. 中国有色金属学报(英文版), 2021, 31(6): 1641-1655.
Du Yuxuan, Yang Xinliang, Li Zushu, et al. Shear localization behavior in hat-shaped specimen of near-αTi-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1641-1655.
|
[17] |
Nesterenko V F, Meyers M A, Wright T W. Self-organization in the initiation of adiabatic shear bands[J]. Acta Mater, 1998,46(1):327−340. doi: 10.1016/S1359-6454(97)00151-1
|
[18] |
Xue Q, Mayers M A, Nesternko V F. Evolution in the patterning of adiabatic shear bands[J]. Acta Mater, 2002,620(1):567−570.
|
[19] |
Lee W S, Lin C F, Chen T H, et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti–15Mo–5Zr–3Al alloy[J]. Mater Sci Eng A, 2008,475(2):172−184.
|
[20] |
Yang D K, Cizek P, Hodgson P D, et al. Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium[J]. Acta Mater, 2010,58(13):4536−4548. doi: 10.1016/j.actamat.2010.05.007
|