Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Qiu Xingyu, Li Yechao, Fang Hongmei, Cao Lili, Zhang Ya, Yang Dengke. Study on evolution and mechanism of adiabatic shear bands of cold rolled titanium[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 79-84. doi: 10.7513/j.issn.1004-7638.2024.02.012
Citation: Qiu Xingyu, Li Yechao, Fang Hongmei, Cao Lili, Zhang Ya, Yang Dengke. Study on evolution and mechanism of adiabatic shear bands of cold rolled titanium[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 79-84. doi: 10.7513/j.issn.1004-7638.2024.02.012

Study on evolution and mechanism of adiabatic shear bands of cold rolled titanium

doi: 10.7513/j.issn.1004-7638.2024.02.012
  • Received Date: 2022-10-17
    Available Online: 2024-05-14
  • Publish Date: 2024-04-30
  • In order to study the evolution law and mechanism of titanium adiabatic localization shear band under cold rolling conditions, conclusions were drawn by exploring and analyzing the cold rolling process. Firstly, the morphology of the shear band was analyzed, followed by the microhardness, and finally the evolution of local shear strain and local temperature increment. The results show that after deformation from 50% to 83% in cold rolling, the edge of the cold rolled titanium plate first forms a deformation zone, in which a local shear band with an angle of 40° to the rolling direction is formed, and the width of the shear band is about 25 μm. In the center of the shear band, there are ultrafine nanocrystals with the size of 20-160 nm and the average size of 70 nm. Through the microhardness test reslut, it can be concluded that the hardness in the center of the shear band is significantly higher than that around the matrix. The calculated shear strain and maximum temperature increment in the shear zone are much higher than that of the whole deformed sample localized shear bands originate from the geometrical instability of the microstructure rather than thermal disturbance.
  • loading
  • [1]
    Wright T W. The physics and mathematics of adiabatic shear bands[M]. Cambridge: Cambridge University Press, 2002.
    [2]
    Xue Q, Gray G T. Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior[J]. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science, 2006(8):37A.
    [3]
    Rittel D, Wang Z G, Merzer M. Adiabatic shear failure and dynamic stored energy of cold work[J]. Phys. Rev. Lett, 2006(96):75502.
    [4]
    Rowe G W. An introduction to the principles of metalworking[M]. Edward Arnold, 1965.
    [5]
    Huang Zikun, Sun Wei. Formation mechanism of adiabatic shear band in dynamic plastic deformation of titanium alloy[J]. Materials Reports, 2021,35(3):3122−3128. (黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021,35(3):3122−3128.

    Huang Zikun, Sun Wei. Formation mechanism of adiabatic shear band in dynamic plastic deformation of titanium alloy[J]. Materials Reports, 2021, 35(3): 3122−3128.
    [6]
    Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021,35(4):100−127. (胡博, 郭亚洲, 魏秋明, 等. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021,35(4):100−127.

    Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 100−127.
    [7]
    Liu Xingfa, Chen Yan, Dai Lanhong. Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6): 49-57. (刘兴发, 陈艳, 戴兰宏. 内生晶体非晶合金复合材料变形场演化与剪切带行为[J]. 中国科学: 物理学 力学 天文学, 2020, 50(6): 49-57.

    Liu Xingfa, Chen Yan, Dai Lanhong. Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6): 49-57.
    [8]
    Li Shuaikang, Liu Xiaoyan, Yang Xirong, et al. Dynamic mechanical properties and adiabatic shear behavior of ultrafine grained materials[J]. Journal of Plasticity Engineering, 2022,29(6):1−8. (李帅康, 刘晓燕, 杨西荣, 等. 超细晶材料动态力学性能及绝热剪切行为[J]. 塑性工程学报, 2022,29(6):1−8.

    Li Shuaikang, Liu Xiaoyan, Yang Xirong, et al. Dynamic mechanical properties and adiabatic shear behavior of ultrafine grained materials[J]. Journal of Plasticity Engineering, 2022, 29(6): 1−8.
    [9]
    Yang Hongbin. Study on the mechanical behavior andadiabatic shearing sensitivity of TC21 titaniumalloyunder different heat treatments[D]. Kunming: Yunnan Normal University, 2017. (杨红斌. 不同热处理条件下TC21钛合金的力学行为及绝热剪切敏感性研究[D]. 昆明: 云南师范大学, 2017.

    Yang Hongbin. Study on the mechanical behavior andadiabatic shearing sensitivity of TC21 titaniumalloyunder different heat treatments[D]. Kunming: Yunnan Normal University, 2017.
    [10]
    Sun Qinghai. Adiabatic shearing mechanism of Ti-6Al-4V[D]. Shenyang: Shenyang University of Technology, 2016. (孙庆海. Ti-6Al-4V绝热剪切机理[D]. 沈阳: 沈阳工业大学, 2016.

    Sun Qinghai. Adiabatic shearing mechanism of Ti-6Al-4V[D]. Shenyang: Shenyang University of Technology, 2016.
    [11]
    Li Yanxing, Wang Lin, Yan Zhiwei, et al. Research on adiabatic shear behavior of Ti6321 alloy with different microstructures[J]. Titanium Industry Progress, 2021,38(6):12−17. (李严星, 王琳, 闫志维, 等. 不 同组织Ti6321合金的绝热剪切行为研究[J]. 钛工业进展, 2021,38(6):12−17.

    Li Yanxing, Wang Lin, Yan Zhiwei, et al. Research on adiabatic shear behavior of Ti6321 alloy with different microstructures[J]. Titanium Industry Progress, 2021, 38(6): 12−17.
    [12]
    Li Jianguo, Dou Qingbo, Suo Tao. Advances in formation mechanisms and multiscale simulations of adiabatic shear bands in metallic materials[J]. Chinese Science Bulletin, 2021, 66(32): 4081-4097. (李建国, 豆清波, 索涛. 金属材料绝热剪切带形成机制及多尺度模拟研究进展[J]. 科学通报, 2021, 66(32): 4081-4097.

    Li Jianguo, Dou Qingbo, Suo Tao. Advances in formation mechanisms and multiscale simulations of adiabatic shear bands in metallic materials[J]. Chinese Science Bulletin, 2021, 66(32): 4081-4097.
    [13]
    Yan Yingliang, Zhang Pengfei. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2020,44(10):76−80,86. (闫迎亮, 张鹏飞. TC4钛合金绝热剪切行为的数值模拟[J]. 机械工程材料, 2020,44(10):76−80,86.

    Yan Yingliang, Zhang Pengfei. Numerical simulation of adiabatic shear behavior of TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2020, 44(10): 76−80,86.
    [14]
    Liu Chang, Jia Yi, Li Sha, et al. Study on microstructure and mechanical properties of cold rolled Ti/Al composite plate with corrugated roller[J]. Journal of Plasticity Engineering, 2020,27(12):66−72. (刘畅, 贾燚, 李莎, 等. 波纹辊冷轧钛/铝复合板的组织和力学性能研究[J]. 塑性工程学报, 2020,27(12):66−72.

    Liu Chang, Jia Yi, Li Sha, et al. Study on microstructure and mechanical properties of cold rolled Ti/Al composite plate with corrugated roller[J]. Journal of Plasticity Engineering, 2020, 27(12): 66−72.
    [15]
    Han Cong, Kong Bin. Analysis of common defects of cold-rolled titanium strip for titanium welded pipe[J]. World Nonferrous Metals, 2020(15):191−192. (韩聪, 孔玢. 钛焊管用冷轧钛带常见缺陷分析[J]. 世界有色金属, 2020(15):191−192.

    Han Cong, Kong Bin. Analysis of common defects of cold-rolled titanium strip for titanium welded pipe[J]. World Nonferrous Metals, 2020(15): 191−192.
    [16]
    Du Yuxuan, Yang Xinliang, Li Zushu, et al. Shear localization behavior in hat-shaped specimen of near-αTi-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1641-1655. (杜予晅, 杨新亮, 李祖树, 等. 近α型Ti-6Al-2Zr-1Mo-1V钛合金帽形试样在高应变速率下的剪切局部化行为[J]. 中国有色金属学报(英文版), 2021, 31(6): 1641-1655.

    Du Yuxuan, Yang Xinliang, Li Zushu, et al. Shear localization behavior in hat-shaped specimen of near-αTi-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1641-1655.
    [17]
    Nesterenko V F, Meyers M A, Wright T W. Self-organization in the initiation of adiabatic shear bands[J]. Acta Mater, 1998,46(1):327−340. doi: 10.1016/S1359-6454(97)00151-1
    [18]
    Xue Q, Mayers M A, Nesternko V F. Evolution in the patterning of adiabatic shear bands[J]. Acta Mater, 2002,620(1):567−570.
    [19]
    Lee W S, Lin C F, Chen T H, et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti–15Mo–5Zr–3Al alloy[J]. Mater Sci Eng A, 2008,475(2):172−184.
    [20]
    Yang D K, Cizek P, Hodgson P D, et al. Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium[J]. Acta Mater, 2010,58(13):4536−4548. doi: 10.1016/j.actamat.2010.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (165) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return