Citation: | Zhong Liang, Fu Yu, Xu Yongdong, Song Yunkun, Wang Yinyang. Research progress on wear resistance of titanium matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 36-42. doi: 10.7513/j.issn.1004-7638.2021.06.004 |
[1] |
Jiang Hong, Zhang Xiaodan. Research and application status of titanium alloys at domestic and abroad[J]. New Material Industry, 2017,(3):7−10. (江洪, 张晓丹. 国内外钛合金研究及应用现状[J]. 新材料产业, 2017,(3):7−10. doi: 10.3969/j.issn.1008-892X.2017.03.003
|
[2] |
Zhu Zhishou, Shang Guoqiang, Wang Xinnan, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020,40(3):1−10. (朱知寿, 商国强, 王新南, 等. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报, 2020,40(3):1−10. doi: 10.11868/j.issn.1005-5053.2020.000086
|
[3] |
Li Zhong, Chen Wei, Wang Xianmei, et al. The application of titanium in automobiles[J]. World Nonferrous Metals, 2010,(6):66−69. (李中, 陈伟, 王宪梅, 等. 钛在汽车上的应用[J]. 世界有色金属, 2010,(6):66−69.
|
[4] |
Yu Zhentao, Yu Sen, Cheng Jun, et al. Development and application of novel biomedical titanium alloy materials[J]. Acta Metallurgica Sinica, 2017,53(10):1238−1264. (于振涛, 余森, 程军, 等. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017,53(10):1238−1264. doi: 10.11900/0412.1961.2017.00288
|
[5] |
Tan Qiming, Sui Nan. Research and progress of particle-reinforced titanium matrix composites[J]. New Materials Industry, 2019,(1):59−64. (谭启明, 隋楠. 颗粒增强钛基复合材料的研究与进展[J]. 新材料产业, 2019,(1):59−64.
|
[6] |
Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R, 2000,29:49−113. doi: 10.1016/S0927-796X(00)00024-3
|
[7] |
曲赫威. 原位自生高体积分数钛基复合材料制备及组织性能研究[D]. 北京: 机械科学研究总院, 2018.
Qu Hewei. The research of microstructures and mechanical properties of high volume fraction titanium matrix composites prepared by in-situ synthesized method [D]. Beijing: Central Academy of Mechanical Sciences, 2018.
|
[8] |
赵勋. 原位自生TiC增强钛基复合材料的制备与性能研究[D]. 北京: 北京交通大学, 2019.
Zhao Xun. Preparation and properties of in-situ TiC reinforced titanium matrix composites[D]. Beijing: Beijing Jiaotong University, 2019.
|
[9] |
Tjong S C, Mai Y W. Processing-structure-property aspects of particulate and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008,68(3-4):583−601. doi: 10.1016/j.compscitech.2007.07.016
|
[10] |
Lu W J, Zhang D, Zhang X N, et al. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique[J]. Materials Science & Engineering A, 2001,311(1-2):142−150.
|
[11] |
Jiao Y, Huang L J, Wang S, et al. Effects of first-scale TiBw on secondary-scale Ti5Si3 characteristics and mechanical properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites[J]. Journal of Alloys & Compounds, 2017,704:269−281.
|
[12] |
Chávez J, Olmos L, Jiménez O, et al. Sintering behaviour and mechanical characterisation of Ti64/x TiN composites and bilayer components[J]. Powder Metallurgy, 2017,60(4):257−266. doi: 10.1080/00325899.2017.1280585
|
[13] |
Lai Xiaojun, Li Shaopeng, Han Yuanfei, et al. Progress on composite design and development of advanced processing technology of multi-phase and multi-scale reinforced titanium matrix composites[J]. Titanium Industry Progress, 2020,37(3):40−48. (来晓君, 李劭鹏, 韩远飞, 等. 多元多尺度增强钛基复合材料复合设计与先进加工技术研究进展[J]. 钛工业进展, 2020,37(3):40−48.
|
[14] |
刘正林. 摩擦学原理[M]. 北京: 高等教育出版社, 2009.
Liu Zhenglin. Principles of tribology[M]. Beijing: Higher Education Press, 2009.
|
[15] |
Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953,24(8):981−988. doi: 10.1063/1.1721448
|
[16] |
Larsen-Basse J. Basic theory of solid friction[J]. Materials Park, OH:ASM International, 1992:27−36.
|
[17] |
孙亮. 原位自生(TiC+TiB)增强钛基复合材料组织调控与耐磨性[D]. 沈阳: 沈阳工业大学, 2018.
Sun Liang. Microstructure control and wear resistance of (TiC+TiB) reinforced titanium matrix composites synthesized using in-situ technology [D]. Shenyang: Shenyang University of Technology, 2018.
|
[18] |
Gürbüz M, Mutuk T, Uyan P. Mechanical, wear and thermal behaviors of graphene reinforced titanium composites[J]. Metals and Materials International, 2020,118:1−9.
|
[19] |
Farias I, Olmos L, Jimenez O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China, 2019,29(8):1653−1664. doi: 10.1016/S1003-6326(19)65072-7
|
[20] |
Xie H, Jin Y, Niu M, et al. Effect of multilayer graphene/nano-Fe2O3 composite additions on dry sliding wear behavior of titanium matrix composites[J]. Journal of Iron and Steel Research International, 2020,27(9):1117−1126. doi: 10.1007/s42243-020-00460-7
|
[21] |
Choi B J. Effect of contact load on wear property of (TiB+TiC) particulates reinforced titanium matrix composites[J]. Journal of Korea Foundry Society, 2017,37(4):115−122.
|
[22] |
An Q, Huang L, Jiang S, et al. Two-scale TiB/Ti64 composite coating fabricated by two-step process[J]. Journal of Alloys and Compounds, 2018,755:29−40. doi: 10.1016/j.jallcom.2018.05.002
|
[23] |
He Bo, Lan Jiaojiao, Yang Guang, et al. Microstructure and wear-resistant properties of in situ TiB-TiC reinforced titanium matrix composites by laser deposition manufacturing[J]. Rare Metal Materials and Engineering, 2017,377(12):233−238. (何波, 兰姣姣, 杨光, 等. 激光原位合成TiB-TiC颗粒增强钛基复合材料的组织与其耐磨性能[J]. 稀有金属材料与工程, 2017,377(12):233−238.
|
[24] |
Zheng B, Dong F, Yuan X, et al. Evaluation on tribological characteristics of (TiC+TiB)/Ti–6Al–4V composite in the range from 25 °C to 600 °C[J]. Wear, 2020:203−256.
|
[25] |
Zheng B, Dong F, Yuan X, et al. Insights into wear behavior of (TiC+TiB)/TC4 composites against different counterface materials[J]. Materials Research Express, 2019,6(11):116584. doi: 10.1088/2053-1591/ab4bac
|
[26] |
王健硕. 钛基Y-PSZ/Ti颗粒增强复合材料的研究[D]. 沈阳: 沈阳理工大学, 2020.
Wang Jianshuo. Titanium-based matrix Y-PSZ/ Ti particle reinforced composites research [D]. Shenyang: Shenyang University of Technology, 2020.
|
[27] |
Liu Y Y, Yao Z, Zhang S, et al. The formation mechanism and wear behavior of TiC+ Ti3SiC2+ Ti5Si3 reinforced Ti6Al4V with network microstructure fabricated by electron beam melting[J]. Materials Research Express, 2019,6(9):0965c3. doi: 10.1088/2053-1591/ab0b5a
|
[28] |
Wang Wei, Zhou Haixiong, Wang Qingjuan, et al. Tribological properties of graphene reinforced titanium matrix composites[J]. Ordnance Material Science and Engineering, 2019,42(1):26−32. (王伟, 周海雄, 王庆娟, 等. 石墨烯增强钛基复合材料的摩擦学性能研究[J]. 兵器材料科学与工程, 2019,42(1):26−32.
|
[29] |
Salehikahrizsangi P, Karimzadeh F, Enayati M H, et al. Investigation of the effects of grain size and nano-sized reinforcements on tribological properties of Ti6Al4V alloy[J]. Wear, 2013,305(1-2):51−57. doi: 10.1016/j.wear.2013.05.008
|
[30] |
Yang B, Lujun H, Qi A, et al. Wire-feed deposition TiB reinforced Ti composite coating: Formation mechanism and tribological properties[J]. Materials Letters, 2018,229:221−224. doi: 10.1016/j.matlet.2018.07.022
|
[31] |
王玉林. TiC/Ti 基复合材料摩擦磨损性能与氧化行为的研究[D]. 长沙: 中南大学, 2011.
Wang Yulin. Friction and wear properties of TiC particle reinforced titanium matrix composite [D]. Changsha: Central South University, 2011.
|
[32] |
Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics & Physics of Solids, 1962,10(4):343−352.
|
[33] |
焦阳. 两级网状结构(Ti5Si3+TiBw)/Ti6Al4V复合材料研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Jiao Yang. Research on (Ti5Si3+TiBw)/Ti6Al4V composites with two-level network structure[D]. Harbin: Harbin Institute of Technology, 2018.
|
[34] |
Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering: A, 2017,687:164−174. doi: 10.1016/j.msea.2017.01.072
|
[35] |
Su Ying, Zuo Qian, Yang Gang, et al. Compressive properties of the grahpene reinforced titanium composites[J]. Rare Metal Materials and Engineering, 2017,46(12):3882−3886. (苏颖, 左倩, 杨刚, 等. 石墨烯增强钛基复合材料的压缩变形行为研究[J]. 稀有金属材料与工程, 2017,46(12):3882−3886.
|
[36] |
Cai C, Song B, Qiu C, et al. Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties[J]. Journal of Alloys and Compounds, 2017,710:364−374. doi: 10.1016/j.jallcom.2017.03.160
|
[37] |
Bai M, Mohsen R, Xu Y, et al. In-situ Ti-6Al-4V/TiC composites synthesized by reactive spark plasma sintering: processing, microstructure, and dry sliding wear behaviour[J]. Wear, 2019,432-433:202944. doi: 10.1016/j.wear.2019.202944
|
[38] |
Xu X, Liu Y, Tabie V, et al. High-temperature oxidation resistance of a Ti–Al–Sn–Zr titanium matrix composites reinforced with in situ TiC and Ti5Si3 fabricated by powder metallurgy[J]. Applied Physics A, 2020,126(4):1−10.
|
[39] |
Odetola P I, Ajenifuja E, Popoola A P I, et al. Effects of silicon carbide contents on microstructure and mechanical properties of spark plasma–sintered titanium-based metal matrix[J]. The International Journal of Advanced Manufacturing Technology, 2019,105(5-6):2491−2500. doi: 10.1007/s00170-019-04317-6
|
[40] |
Zhang F, Du M, Fan K, et al. Fabrication and mechanical properties of network structured titanium alloy matrix composites reinforced with Ti2AlC particulates[J]. Materials Science and Engineering, 2020,776(3):139065.1−139065.9.
|
[41] |
李争显, 王少鹏, 慕伟意, 等. 钛表面处理技术的研究现状[C]// 第十届全国表面工程大会暨第六届全国青年表面工程论文集. 武汉: 中国机械工程学会, 中国表面工程协会, 2014: 76.
Li Zhengxian, Wang Shaopeng, Mu Weiyi, et al. Research status of titanium surface treatment technology [C]//Proceedings of the 10th Nationnal Surface Engineering Conference and 6th National Youth Surface Engineering Forum. Wuhan: Chinese Society of Mechanical Engineering, China Surface Engineering Association, 2014: 76.
|
[42] |
陆伟. 钛表面激光熔覆纳米碳管组织与性能的研究[D]. 大连: 大连理工大学, 2014.
Lu Wei. Study on microstructure and properties of laser cladding titanium with CNTs[D]. Dalian: Dalian University of Technology, 2014.
|
[43] |
姬寿长, 李京龙, 李争显, 等. TC21钛合金表面处理技术的研究现状[J/OL]. 热加工工艺, 2021(4): 17-20, 24[2021-03-01]. https://doi.org/10.14158/j.cnki.1001-3814.20192423.
Ji Shouchang, Li Jinglong, Li Zhengxian, et al. Research status surface treatment technology on TC21 titanium alloy [J/OL]. Hot Working Process, 2021 (4): 17-20, 24. [2021-03-01] https://doi.org/10.14158/j.cnki.1001-3814.20192423.
|
[44] |
Wang Qinghong, Wang Hongying. Wear resistance of surface layer of TC4 alloy after laser surface modification[J]. Casting Technology, 2015,(1):8. (王庆红, 王红英. 激光表面改性后TC4钛合金的表面层耐磨性分析[J]. 铸造技术, 2015,(1):8.
|
[45] |
Huang Xueli, Tan Junguo, Zhang Tengfei, et al. Deposition and anti-wear/corrosion properties of nano-multilayer TiN/CrN films on titanium alloy[J]. Materials Guide, 2021,35(4):4139−4143. (黄雪丽, 谭君国, 张腾飞, 等. 钛合金表面TiN/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能[J]. 材料导报, 2021,35(4):4139−4143. doi: 10.11896/cldb.19070256
|
[46] |
Liu Yuancai, Sun Qisheng, Liu Zhiyuan, et al. Effect of BN on micro arc oxidation film and wear resistance of TB8 titanium alloy[J]. Journal of Qingdao University of Technology, 2020,41(6):102−107. (刘元才, 孙启胜, 刘志远, 等. 氮化硼对TB8钛合金微弧氧化膜及其耐磨性的影响[J]. 青岛理工大学学报, 2020,41(6):102−107. doi: 10.3969/j.issn.1673-4602.2020.06.015
|
[47] |
Yang Yucheng, Pan Yu, Lu Xin, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method[J]. Powder Metallurgy Technology, 2020,(2):11. (杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展[J]. 粉末冶金技术, 2020,(2):11.
|
[48] |
Al-Sayed Ali S R, Hussein A H A, Nofal A A M S, et al. Laser powder cladding of Ti-6Al-4V α/β alloy[J]. Materials, 2017,10(10):1178. doi: 10.3390/ma10101178
|