Citation: | LONG Wei, KUANG Zhenyue, LI Guoyang, WU Guilin, CHEN Wenxiong, JIANG Qi. 2300 MPa grade vanadium-containing low alloyed steel: ultrafine microstructure preparation and performance[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 187-194. doi: 10.7513/j.issn.1004-7638.2025.03.026 |
[1] |
LIU S, CHEN H Q, CAO M, et al. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. Iron Steel Vanadium Titanium, 2023,44(6):133-138. (刘爽, 陈慧琴, 曹苗, 等. 1800MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023,44(6):133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
LIU S, CHEN H Q, CAO M, et al. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
|
[2] |
QIN S, LIU Y, HAO Q, et al. The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metallurgical and Materials Transactions A, 2015,46(9):4047-4055. doi: 10.1007/s11661-015-3021-2
|
[3] |
SUN J, GUO S, ZHAO S, et al. Improving strength of cold-drawn wire by martensitic transformation in a 0.65wt% C low-alloy steel[J]. Materials Science and Engineering: A, 2020,790(14):139719.
|
[4] |
HUANG M X, HE B B. Alloy design by dislocation engineering[J]. Journal of materials science & technology, 2018,34(3):417-420.
|
[5] |
SAEGLITZ M, KRAUSS G. Deformation, fracture, and mechanical properties of low-temperature-tempered martensite in SAE 43xx steels[J]. Metallurgical and Materials Transactions A, 1997,28(2):377-387. doi: 10.1007/s11661-997-0139-x
|
[6] |
LIU F, CHEN K, KANG C, et al. Effects of V-Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times[J]. Journal of Materials Research and Technology, 2022,19:779-793. doi: 10.1016/j.jmrt.2022.05.043
|
[7] |
HIDALGO J, SANTOFIMIA M J. Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite[J]. Metallurgical and Materials Transactions A, 2016,47(11):5288-5301. doi: 10.1007/s11661-016-3525-4
|
[8] |
WANG Y, SUN J, JIANG T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility[J]. Acta Materialia, 2018,158:247-256. doi: 10.1016/j.actamat.2018.07.060
|
[9] |
WANG M L, CHANG H. Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys[J]. Journal of Aeronautical Materials, 2022,42(6):65-71. (王美玲, 常海. 初始组织对Mg-8Gd-2Y-0.5Zr合金蠕变性能的影响[J]. 航空材料学报, 2022,42(6):65-71. doi: 10.11868/j.issn.1005-5053.2020.000172
WANG M L, CHANG H. Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 65-71. doi: 10.11868/j.issn.1005-5053.2020.000172
|
[10] |
LIU Z, YANG Z, WANG X, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. Journal of Alloys and Compounds, 2022,928:167135. doi: 10.1016/j.jallcom.2022.167135
|
[11] |
KIM B, BOUCARD E, SOURMAIL T, et al. The influence of silicon in tempered martensite: Understanding the microstructure-properties relationship in 0.5-0.6 wt. % C steels[J]. Acta Materialia, 2014,68:169-178. doi: 10.1016/j.actamat.2014.01.039
|
[12] |
LIU T, CAO Z, WANG H, et al. A new 2.4 GPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations[J]. Scripta Materialia, 2020,178:285-289. doi: 10.1016/j.scriptamat.2019.11.045
|
[13] |
LIU F, LIN X, SONG M, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015,621:35-41. doi: 10.1016/j.jallcom.2014.09.111
|
[14] |
YANG B, HE Q, WANG H, et al. Achieving an extra-high-strength yet ductile steel by synergistic effects of TRIP and maraging[J]. Materials Research Letters, 2023,11(7):578-585. doi: 10.1080/21663831.2023.2194910
|
[15] |
CHENG Z, LIU J, LIU G, et al. Enhancement of strength-ductility trade-off in a 2000 MPa grade press-hardened steel via refined martensite with stable high-density cementite[J]. Journal of Materials Research and Technology, 2023,27:664-680. doi: 10.1016/j.jmrt.2023.09.295
|
[16] |
CHEN K, JIANG Z, LIU F, et al. Enhanced mechanical properties by retained austenite in medium-carbon Si-rich microalloyed steel treated by quenching-tempering, austempering and austempering-tempering processes[J]. Materials Science and Engineering: A, 2020,790:139742. doi: 10.1016/j.msea.2020.139742
|
[17] |
WANG J, WANG S, LI W, et al. Ultrastrong and ductile additively-manufactured medium-carbon steel via modulating austenite stability[J]. Scripta Materialia, 2024,239:115780. doi: 10.1016/j.scriptamat.2023.115780
|
[18] |
WANG S, XI X, ZHAO Y, et al. Microstructures and mechanical properties of an ultrahigh-strength and ductile medium-carbon high-silicon spring steel[J]. Steel Research International, 2023,94(1):2200149. doi: 10.1002/srin.202200149
|
[19] |
SUNIL S, KAPOOR R, SARKAR S K, et al. Ultra-high strength steel made from AISI 304L using a novel thermo-mechanical processing technique[J]. Acta Materialia, 2021,221:117379. doi: 10.1016/j.actamat.2021.117379
|
[20] |
WANG J, EL-FALLAH G M A M, WANG Z, et al. Strength improvement over 2 GPa and austenite grain ultra-refinement in a low carbon martensite steel achieved by ultra-rapid heating and quenching[J]. Materials Science and Engineering: A, 2023,884:145538. doi: 10.1016/j.msea.2023.145538
|
[21] |
YANG G, SUN X, LI Z, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials & Design, 2013,50:102-107.
|
[22] |
SUN J, LIU Y, ZHU Y, et al. Super-strong dislocation-structured high-carbon martensite steel[J]. Scientific Reports, 2017,7(1):6596. doi: 10.1038/s41598-017-06971-w
|
[23] |
Gao B, WANG L, LIU Y, et al. Achieving ultrahigh strength by tuning the hierarchical structure of low-carbon martensitic steel[J]. Materials Science and Engineering: A, 2023,881:145370. doi: 10.1016/j.msea.2023.145370
|
[24] |
ZHAO L, QIAN L, ZHOU Q, et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel[J]. Materials & Design, 2019,183:108123.
|