Citation: | ZHANG Jilin, TANG Linhu, MA Furong, LI Zhonglin, HA Jinfu. Construction of constitutive model for GH4169 alloy under high temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 157-166. doi: 10.7513/j.issn.1004-7638.2025.03.022 |
[1] |
WU H, KONG X W, LUO P. Constitutive equation for high-temperature deformation of GH4169 alloy[J]. Machinery Design & Manufacture, 2020(8):163-167. (吴昊, 孔祥伟, 罗平. GH4169合金高温变形过程本构方程[J]. 机械设计与制造, 2020(8):163-167.
WU H, KONG X W, LUO P. Constitutive equation for high-temperature deformation of GH4169 alloy[J]. Machinery Design & Manufacture, 2020(8): 163-167.
|
[2] |
LIU X, YAN H S, KONG Z K, et al. Dynamic mechanical behavior and constitutive relationship of superalloy GH4169[J]. Materials for Mechanical Engineering, 2019,43(1):75-81. (刘晓, 闫欢松, 孔祖开, 等. GH4169高温合金的动态力学行为及其本构关系[J]. 机械工程材料, 2019,43(1):75-81. doi: 10.11973/jxgccl201901016
LIU X, YAN H S, KONG Z K, et al. Dynamic mechanical behavior and constitutive relationship of superalloy GH4169[J]. Materials for Mechanical Engineering, 2019, 43(1): 75-81. doi: 10.11973/jxgccl201901016
|
[3] |
WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(4):946-953. (王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究[J]. 航空学报, 2013,34(4):946-953. doi: 10.7527/S1000-6893.2013.0155
WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 946-953. doi: 10.7527/S1000-6893.2013.0155
|
[4] |
HU W. Experiment and simulation of dynamic mechanical properties of GH4169 alloy under high strain rate impact loading based on SHPB[D]. Chongqing: Chongqing University of Technology, 2021. (胡伟. 基于SHPB高应变率冲击加载下的GH4169合金动态力学性能实验与仿真[D]. 重庆: 重庆理工大学, 2021.
HU W. Experiment and simulation of dynamic mechanical properties of GH4169 alloy under high strain rate impact loading based on SHPB[D]. Chongqing: Chongqing University of Technology, 2021.
|
[5] |
WANG X Y. Study on cutting performance evaluation and constitutive model of superalloy GH4169[D]. Jinan: Shandong University, 2016. (王相宇. 高温合金GH4169的切削加工性评价方法和本构模型研究[D]. 济南: 山东大学, 2016.
WANG X Y. Study on cutting performance evaluation and constitutive model of superalloy GH4169[D]. Jinan: Shandong University, 2016.
|
[6] |
ZHANG B, YUE L, CHEN H F, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021,50(1):212-222. (张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021,50(1):212-222.
ZHANG B, YUE L, CHEN H F, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.
|
[7] |
GU Y C. Study on the constitutive model of GH4169 alloy under high temperature and high strain rate based on genetic algorithm and neural network[D]. Chongqing: Chongqing University of Technology, 2022. (古愉川. 基于遗传算法与神经网络的高温高应变率下GH4169本构模型研究[D]. 重庆: 重庆理工大学, 2022.
GU Y C. Study on the constitutive model of GH4169 alloy under high temperature and high strain rate based on genetic algorithm and neural network[D]. Chongqing: Chongqing University of Technology, 2022.
|
[8] |
ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (邹品. GH4169高温动态本构模型与高速冲击性能研究[D]. 南京: 南京航空航天大学, 2018.
ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
[9] |
REN Y H, CHENG Z, WANG L X, et al. Constitutive equation for hot deformation and hot processing map of wrought GH4169 superalloy[J]. Journal of Netshape Forming Engineering, 2023,15(5):148-155. (任永海, 程治, 王龙祥, 等. 锻态GH4169合金热变形本构方程及热加工图[J]. 精密成形工程, 2023,15(5):148-155.
REN Y H, CHENG Z, WANG L X, et al. Constitutive equation for hot deformation and hot processing map of wrought GH4169 superalloy[J]. Journal of Netshape Forming Engineering, 2023, 15(5): 148-155.
|
[10] |
WANG W. Hot deformation behaviour and recrystallization model of GH4169 nickel base superalloy[J]. Materials for Mechanical Engineering, 2020,44(9):87-91,98. (王稳. GH4169镍基高温合金的热变形行为与再结晶模型[J]. 机械工程材料, 2020,44(9):87-91,98.
WANG W. Hot deformation behaviour and recrystallization model of GH4169 nickel base superalloy[J]. Materials for Mechanical Engineering, 2020, 44(9): 87-91,98.
|
[11] |
LUO P. Dynamic recrystallization simulation of GH4169 alloy during thermal deformation[D]. Shenyang: Northeastern University, 2014. (罗平. GH4169合金热变形动态再结晶模拟[D]. 沈阳: 东北大学, 2014.
LUO P. Dynamic recrystallization simulation of GH4169 alloy during thermal deformation[D]. Shenyang: Northeastern University, 2014.
|
[12] |
CHEN G, WANG Q Q, DU H J. Experimental study on dynamic mechanical properties of S500MC steel[J]. Railway Quality Control, 2019,47(5):27-30. (陈刚, 王青权, 杜洪军. S500MC钢动态力学性能试验研究[J]. 铁道技术监督, 2019,47(5):27-30.
CHEN G, WANG Q Q, DU H J. Experimental study on dynamic mechanical properties of S500MC steel[J]. Railway Quality Control, 2019, 47(5): 27-30.
|
[13] |
ZHANG R J. Study on dynamic mechanical behaviors of GH4169 nickel based superalloy[D]. Beijing: Beijing Institute of Technology, 2016. (张锐杰. GH4169镍基高温合金动态力学性能研究[D]. 北京: 北京理工大学, 2016.
ZHANG R J. Study on dynamic mechanical behaviors of GH4169 nickel based superalloy[D]. Beijing: Beijing Institute of Technology, 2016.
|
[14] |
HAN R R. Research on deforming properties of superalloy GH4169[D]. Shenyang: Northeastern University, 2014. (韩蕊蕊. GH4169高温合金的成型性能研究[D]. 沈阳: 东北大学, 2013.
HAN R R. Research on deforming properties of superalloy GH4169[D]. Shenyang: Northeastern University, 2014.
|
[15] |
BAO W P, ZHAO Y Z, LI C M, et al. Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J]. Journal of Mechanical Engineering, 2010,46(4):74-79. (包卫平, 赵昱臻, 李春明, 等. 纯铁高温高应变率下的动态本构关系试验研究[J]. 机械工程学报, 2010,46(4):74-79. doi: 10.3901/JME.2010.04.074
BAO W P, ZHAO Y Z, LI C M, et al. Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J]. Journal of Mechanical Engineering, 2010, 46(4): 74-79. doi: 10.3901/JME.2010.04.074
|
[16] |
MA B, LI P, LIANG Q. Comparison on high temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Materials for Mechanical Engineering, 2021,45(1):92-99. (马斌, 李平, 梁强. 基于修正JC模型和BP-ANN算法预测HNi55-7-4-2合金高温流变行为的对比[J]. 机械工程材料, 2021,45(1):92-99.
MA B, LI P, LIANG Q. Comparison on high temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Materials for Mechanical Engineering, 2021, 45(1): 92-99.
|
[17] |
KHAN A S, HUANG S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5−104s−1[J]. International Journal of Plasticity, 1992,8:397-424. doi: 10.1016/0749-6419(92)90057-J
|
[18] |
JOHNSONG R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proc. 7Int. Symp. Ballistics, 1983: 541-547.
|
[19] |
JOHNSONG R, HOEGFELDTJM, LINDHOLM U S, et al. Response of various metals o large torsional strains over a large range of strain rates. part 1: ductile metals[J]. Trans. ASME, J. Eng. Mat. Tech. , 1983, 105: 42-47.
|
[20] |
GUO P C, LI J, CAO S F, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion and Shock Waves, 2018, 38(3): 586-595. (郭鹏程, 李健, 曹淑芬, 等. 大应变率范围内AM80镁合金的变形行为及组织演变[J]. 振动与冲击, 2018, 38(3): 586-595.
GUO P C, LI J, CAO S F, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion and Shock Waves, 2018, 38(3): 586-595.
|
[21] |
QIAN X Y, PENG X B, SONG Y T, et al. Dynamic constitutive relationship of CuCrZr alloy based on Johnson-Cook model[J]. Nuclear Materials and Energy, 2020,24(8):100768-100774.
|
[22] |
ZHANG J L, ZHANG Y M, LUO W C, et al. Establishment of a constitutive model of aviation stainless steel 0Cr17Ni4Cu4Nb considering the coupling effects of strain, strain rate and temperature[J]. Iron Steel Vanadium Titanium, 2023,44(6):149-159. (张继林, 张又铭, 罗文翠, 等. 考虑应变、应变率和温度耦合作用下航空不锈钢0Cr17Ni4Cu4Nb本构模型的建立[J]. 钢铁钒钛, 2023,44(6):149-159.
ZHANG J L, ZHANG Y M, LUO W C, et al. Establishment of a constitutive model of aviation stainless steel 0Cr17Ni4Cu4Nb considering the coupling effects of strain, strain rate and temperature[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 149-159.
|
[23] |
XU T P, WANG L L, LU W X. The thermo-viscoplasticity and adiabatic shear deformation for a titanium alloy Ti-6Al-4V under high strain rates[J]. Explosion and Shock Waves, 1987(1):1-8. (徐天平, 王礼立, 卢维娴. 高应变率下钛合金Ti-6Al-4V的热-粘塑性特性和绝热剪切变形[J]. 爆炸与冲击, 1987(1):1-8.
XU T P, WANG L L, LU W X. The thermo-viscoplasticity and adiabatic shear deformation for a titanium alloy Ti-6Al-4V under high strain rates[J]. Explosion and Shock Waves, 1987(1): 1-8.
|
[24] |
NIU D X, ZHAO C, LI D X, et al. Constitutive modeling of the flow stress behavior for the hot deformation of Cu-15Ni-8Sn alloys[J]. Frontiers in Materials, 2022,7(12):577867.
|
[25] |
LI Z H, HUANG L, BAN Y J, et al. Research on flow stress and constitutive equation for GH4698 alloy[J]. Forging & Stamping Technology, 2024,49(3):207-218. (李中豪, 黄亮, 班宜杰, 等. GH4698 合金流动应力及本构方程研究[J]. 锻压技术, 2024,49(3):207-218.
LI Z H, HUANG L, BAN Y J, et al. Research on flow stress and constitutive equation for GH4698 alloy[J]. Forging & Stamping Technology, 2024, 49(3): 207-218.
|
[26] |
SU N, CHEN M H, XIE L S, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021,35(3):201-208. (苏楠, 陈明和, 谢兰生, 等. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021,35(3):201-208.
SU N, CHEN M H, XIE L S, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021, 35(3): 201-208.
|
[27] |
JIA H S, LUO W C, ZHANG J L, et al. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022,43(2):178-185. (贾海深, 罗文翠, 张继林, 等. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022,43(2):178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
JIA H S, LUO W C, ZHANG J L, et al. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
|
[28] |
ZHAO L D, ZHANG Y M, ZHANG J L, et al. Research on prediction accuracy of the flow stress of 0Cr17Ni4Cu4Nb stainless steel based on machine learning[J]. Iron Steel Vanadium Titanium, 2023, 44 (4): 196-204. (赵礼栋, 张又铭, 张继林, 等. 基于机器学习的0Cr17Ni4Cu4Nb不锈钢流变应力预测研究 [J]. 钢铁钒钛, 2023, 44 (4): 196-204.
ZHAO L D, ZHANG Y M, ZHANG J L, et al. Research on prediction accuracy of the flow stress of 0Cr17Ni4Cu4Nb stainless steel based on machine learning[J]. Iron Steel Vanadium Titanium, 2023, 44 (4): 196-204.
|