Citation: | CHEN Mao, CHEN Buxin, MA Kaihui, TANG Wenbo, LIU Lingling, HU Meilong. Study on the influence of highly oxygen enrichment and H2-rich oxygen blast furnace atmospheres on softening-melting behaviors of vanadium titanomagnetite mixed burden[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 112-121. doi: 10.7513/j.issn.1004-7638.2025.03.017 |
[1] |
DU H G. Principle of smelting vanadium titanium magnetite in blast furnace[M]. Beijing: Metallurgical Industry Press, 1996. (杜鹤桂. (1996). 高炉冶炼钒钛磁铁矿原理[M]. 北京: 冶金工业出版社, 1996.
DU H G. Principle of smelting vanadium titanium magnetite in blast furnace[M]. Beijing: Metallurgical Industry Press, 1996.
|
[2] |
DENG J, XUE X, LIU G G. Present situation and development of comprehensive utilization of vanadium titanomagnetite resources in Pangang[J]. Journal of Materials and Metallurgy, 2007,6(2):83-86. (邓君, 薛逊, 刘功国. 攀钢钒钛磁铁矿资源综合利用现状与发展[J]. 材料与冶金学报, 2007,6(2):83-86.
DENG J, XUE X, LIU G G. Present situation and development of comprehensive utilization of vanadium titanomagnetite resources in Pangang[J]. Journal of Materials and Metallurgy, 2007, 6(2): 83-86.
|
[3] |
USUI T, KAWABATA H, ONO-NAKAZATO H. Fundamental experiments on the H2 gas injection into the lower part of a blast furnace shaft[J]. ISIJ international, 2002, 42: 14-18.
|
[4] |
WANG H T, CHU M S, GUO T L, et al. Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling[J]. Steel Research International, 2016,87(5):539-549. doi: 10.1002/srin.201500372
|
[5] |
XIA Z X, JIANG Z Y, Zhang X R, et al. The CO2 reduction potential for the oxygen blast furnace with CO2 capture and storage under hydrogen-enriched conditions[J]. International Journal of Greenhouse Gas Control, 2022), 121: 103793.
|
[6] |
TIAN B S. Research and practice on low carbon smelting technology of hydrogen-rich carbon cycle blast furnace at Bayi steel[J]. Xinjiang Iron and Steel, 2021,4(4):1-3. (田宝山. 八钢富氢碳循环高炉低碳冶炼技术研究与实践[J]. 新疆钢铁, 2021,4(4):1-3.
TIAN B S. Research and practice on low carbon smelting technology of hydrogen-rich carbon cycle blast furnace at Bayi steel[J]. Xinjiang Iron and Steel, 2021, 4(4): 1-3.
|
[7] |
HIGUCHI K, MATSUZAKI S, SAITO K, et al. Improvement in reduction behavior of sintered ores in a blast furnace through injection of reformed coke oven gas[J]. ISIJ International, 2020,60(10):2218-2227. doi: 10.2355/isijinternational.ISIJINT-2020-063
|
[8] |
PAN Y Z, ZHANG A J, LIN L, et al. Correlation between reduction degree and softening and melting properties of pellets[C]// Proceedings of the 10th international symposium on high-temperature metallurgical processing. San Antonio, 2019: 523-530.
|
[9] |
QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen-rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron & Steel, 2023, 58(5): 31-38. (郄亚娜, 靳亚涛, 康媛, 等. 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023, 58(5): 31-38.
QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen-rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron & Steel, 2023, 58(5): 31-38.
|
[10] |
CHEN B J, JIANG T, WEN J, et al. High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2024,31(3):498-507. doi: 10.1007/s12613-023-2719-1
|
[11] |
DENG Q Y. Study on the formation conditions and regulation mechanism of titanium carbonitride during blast furnace smelting of vanadium-titanium magnetite[D]. Chongqing: Chongqing University, 2012. (邓青宇. 钒钛磁铁矿高炉冶炼过程中碳氮化钛形成条件与调控机制研究[D]. 重庆: 重庆大学, 2012.
DENG Q Y. Study on the formation conditions and regulation mechanism of titanium carbonitride during blast furnace smelting of vanadium-titanium magnetite[D]. Chongqing: Chongqing University, 2012.
|
[12] |
QIE Y N, LÜ Q, LIU X J, et al. Effect of hydrogen addition on softening and melting reduction behaviors of ferrous burden in gas-injection blast furnace[J]. Metallurgical and Materials Transactions B, 2018,49(5):2622-2632. doi: 10.1007/s11663-018-1299-3
|
[13] |
XIN R, ZHAO J B, GAO X D, et al. Softening-melting properties and slag evolution of vanadium titano-magnetite sinter in hydrogen-rich gases[J]. Crystals, 2023,13(2):103390.
|
[14] |
LIU R W, PAN Z H, LI J X, et al. Study on softening-melting characteristics of iron bearing material in oxygen blast furnace[J]. Journal of Iron and Steel Research, 2022,34(6):534-542. (刘荣伟, 潘中华, 李家新, 等. 氧气高炉含铁炉料软熔特性研究[J]. 钢铁研究学报, 2022,34(6):534-542.
LIU R W, PAN Z H, LI J X, et al. Study on softening-melting characteristics of iron bearing material in oxygen blast furnace[J]. Journal of Iron and Steel Research, 2022, 34(6): 534-542.
|
[15] |
LÜ B B. Basic research on gas cycle coupling hydrogen-rich blast furnace ironmaking[D]. Beijing, Beijing University of Science and Technology, 2024. (吕斌斌. 煤气循环耦合富氢高炉炼铁基础研究[D]. 北京, 北京科技大学, 2024.
LÜ B B. Basic research on gas cycle coupling hydrogen-rich blast furnace ironmaking[D]. Beijing, Beijing University of Science and Technology, 2024.
|
[16] |
LÜ Q, QIE Y N, LIU X J, et al. Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace[J]. Thermochimica Acta, 2017,648:79-90. doi: 10.1016/j.tca.2016.12.009
|
[17] |
MAO X D. Basic research on the reaction behavior of iron oxides with H2-CO mixed gas[D]. Beijing, Beijing University of Science and Technology, 2023. (毛旭东. 铁氧化物与H2-CO混合气体反应行为的基础研究[D]. 北京, 北京科技大学, 2023.
MAO X D. Basic research on the reaction behavior of iron oxides with H2-CO mixed gas[D]. Beijing, Beijing University of Science and Technology, 2023.
|
[18] |
XIE H E, HU P, ZHENG K, et al. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. Iron Steel Vanadium Titanium, 2022,43(2):107-117. (谢洪恩, 胡鹏, 郑魁, 等. 钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究[J]. 钢铁钒钛, 2022,43(2):107-117.
XIE H E, HU P, ZHENG K, et al. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 107-117.
|
[19] |
WANG W Z, YU K. Theory and practice of smelting vanadium-titanium magnetite in blast furnace[J]. Journal of Northeast Institute of Technology, 1984(4):41-48,125-126. (王文忠, 余琨. 高炉冶炼钒钛磁铁矿的理论与实践[J]. 东北工学院学报, 1984(4):41-48,125-126.
WANG W Z, YU K. Theory and practice of smelting vanadium-titanium magnetite in blast furnace[J]. Journal of Northeast Institute of Technology, 1984(4): 41-48,125-126.
|
[20] |
DIAO R S. A new understanding of vanadium titanomagnetite smelting in blast furnace[J]. Iron & Steel, 1999(6):14-16,40. (刁日升. 对高炉冶炼钒钛磁铁矿问题的新认识[J]. 钢铁, 1999(6):14-16,40.
DIAO R S. A new understanding of vanadium titanomagnetite smelting in blast furnace[J]. Iron & Steel, 1999(6): 14-16,40.
|
[21] |
CHEN M, CHEN B X, JIANG Y, et al. Study of Ti(C, N) Formations in TiO2-Containing Slags[J]. Metallurgical and Materials Transactions B, 2025,56:1018-1028. doi: 10.1007/s11663-024-03410-w
|
[22] |
QIE Y N, SHANGGUAN D Y, LI Y Z, et al. Formation of primary slag and carburizing behavior of metal iron in cohesive zone of Hydrogen-rich blast furnace[J]. ISIJ International, 2024), 64(9): 1360-1366.
|
[23] |
GUO X S, YU J B, ZHANG Y J, et al. Mechanism of desulfurization from liquid iron by hydrogen plasma arc melting[J]. Metallurgical and Materials Transactions B, 2018,49(6):2951-2955. doi: 10.1007/s11663-018-1345-1
|