YANG Guang, LI Haiqiang, JIA Jixiang, WANG Haiwei, GU Hongfei. Development of hot metal pre-dephosphorization agent based on the resource utilization of sludge in continuous casting swirl wells[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 107-111. doi: 10.7513/j.issn.1004-7638.2025.03.016
Citation: YANG Guang, LI Haiqiang, JIA Jixiang, WANG Haiwei, GU Hongfei. Development of hot metal pre-dephosphorization agent based on the resource utilization of sludge in continuous casting swirl wells[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 107-111. doi: 10.7513/j.issn.1004-7638.2025.03.016

Development of hot metal pre-dephosphorization agent based on the resource utilization of sludge in continuous casting swirl wells

doi: 10.7513/j.issn.1004-7638.2025.03.016
  • Received Date: 2024-12-07
  • Publish Date: 2025-06-30
  • In order to develop a P-removal agent for molten iron by using the sludge from the continuous casting swirl well to realize the resource utilization, the pre-dephosphorization agent with w(CaO): w(sludge) =0, 7%, 14%, 20%, 25% and 30% was prepared, and the melting performance measurement and P removal evaluation experiment were carried out based on the composition analysis and thermodynamic calculation. The results show that the sludge contains high quantity of (Fe2O3+FeO) and has an alkalinity of 0.86, and it is thermodynamically feasible as the base material for the preparation of pre-dephosphorization agent. With the increase of CaO from 0 to 30%, the melting point of the P-removal agent decreases first and then increases, and the melting rate rises first and then declines. When w(CaO): w(sludge) = 20%, the melting point of the P-removal agent is the lowest and the melting rate is the fastest. With the increase of CaO from 14% to 25%, the P removal rate first increases and then decreases, and the recovery rate of Fe gradually rises. Overall, when w(CaO): w(sludge)=20%, the removal rate of P and recovery rate of Fe are 73.6% and 86.76%, respectively, both deep removal of P and efficient ferrite recovery can be achieved at the same time.
  • [1]
    PAN F F. Study on the reaction behavior between CaO-Fe2O3 based slag and the hot metal[D]. Chongqing: Chongqing University, 2020. (潘飞飞. CaO-Fe2O3基渣系与铁水反应行为研究[D]. 重庆: 重庆大学, 2020.

    PAN F F. Study on the reaction behavior between CaO-Fe2O3 based slag and the hot metal[D]. Chongqing: Chongqing University, 2020.
    [2]
    LIU Q, WANG C Y, JI L L. Present situation and development of hot metal pretreatment process[J]. Metallurgical Equipment, 2022(S1):149-155. (刘倩, 王长勇, 季乐乐. 铁水预处理工艺现状与发展[J]. 冶金设备, 2022(S1):149-155.

    LIU Q, WANG C Y, JI L L. Present situation and development of hot metal pretreatment process[J]. Metallurgical Equipment, 2022(S1): 149-155.
    [3]
    WANG Y M, TAO L, GUO H Y, et al. Dephosphorization influence factors in converter hot metal pretreatment[J]. Iron and Steel, 2020,55(9):29-37. (王雨墨, 陶林, 郭皓宇, 等. 转炉铁水预处理脱磷的影响因素[J]. 钢铁, 2020,55(9):29-37.

    WANG Y M, TAO L, GUO H Y, et al. Dephosphorization influence factors in converter hot metal pretreatment[J]. Iron and Steel, 2020, 55(9): 29-37.
    [4]
    ZHAO J X. Researches on secondary dephosphurizaition[J]. Steelmaking, 1995(6):25-29. (赵俊学. 炉外脱磷剂研究概况[J]. 炼钢, 1995(6):25-29.

    ZHAO J X. Researches on secondary dephosphurizaition[J]. Steelmaking, 1995(6): 25-29.
    [5]
    DU F. The development of hot metal dephosphorization pretreatment[J]. Shanghai Metals, 1999(6):16-20. (杜锋. 铁水脱磷预处理工艺的发展[J]. 上海金属, 1999(6):16-20. doi: 10.3969/j.issn.1001-7208.1999.06.003

    DU F. The development of hot metal dephosphorization pretreatment[J]. Shanghai Metals, 1999(6): 16-20. doi: 10.3969/j.issn.1001-7208.1999.06.003
    [6]
    LIU Y Q, LUO L, ZHANG P, et al. Development of green recycling system of hot slag and molten steel at Shougang Jingtang[J]. China Metallurgy, 2018,28(6):25-31, 42. (刘延强, 罗磊, 张鹏, 等. 首钢京唐热态渣、钢绿色循环利用体系开发[J]. 中国冶金, 2018,28(6):25-31, 42.

    LIU Y Q, LUO L, ZHANG P, et al. Development of green recycling system of hot slag and molten steel at Shougang Jingtang[J]. China Metallurgy, 2018, 28(6): 25-31, 42.
    [7]
    XU B, WANG Z D, DING J Y. LT-Dust and BOF slag as hot metal dephosphorization fluxes at Baosteel.[J]. Baosteel technology, 2006(1):6-9. (徐兵, 王兆达, 丁建勇. 宝钢LT灰及转炉渣用于铁水预处理脱磷剂的实践[J]. 宝钢技术, 2006(1):6-9. doi: 10.3969/j.issn.1008-0716.2006.01.002

    XU B, WANG Z D, DING J Y. LT-Dust and BOF slag as hot metal dephosphorization fluxes at Baosteel.[J]. Baosteel technology, 2006(1): 6-9. doi: 10.3969/j.issn.1008-0716.2006.01.002
    [8]
    SUN G B. Efficiency enhancement mechanism of fluorine-free steel-making dephosphorizer made from collected dust and its harm reducing effect[D]. Wuhan: Wuhan University of Technology, 2022. (孙国斌. 除尘灰基无氟炼钢脱磷剂增效机理与降害作用研究[D]. 武汉: 武汉科技大学, 2022.

    SUN G B. Efficiency enhancement mechanism of fluorine-free steel-making dephosphorizer made from collected dust and its harm reducing effect[D]. Wuhan: Wuhan University of Technology, 2022.
    [9]
    WU Q A, ZHU B L, LI D J. The preliminary study of the pretreatment of medium phosphorus hot metal(semi-steel)[J]. East China Metallurgical Institute Newspaper, 1986(4):1-10. (吴淇澳, 朱本立, 李大经. 中磷铁水(半钢)预处理初探[J]. 华东冶金学院报, 1986(4):1-10.

    WU Q A, ZHU B L, LI D J. The preliminary study of the pretreatment of medium phosphorus hot metal(semi-steel)[J]. East China Metallurgical Institute Newspaper, 1986(4): 1-10.
    [10]
    HUANG X H. Principles of iron and steel metallurgy[M]. Beijing: Metallurgical Industry Press, 2013: 298-299. (黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2013: 298-299.

    HUANG X H. Principles of iron and steel metallurgy[M]. Beijing: Metallurgical Industry Press, 2013: 298-299.
    [11]
    ZHANG H B, DONG L Y, CHEN D F, et al. Thermodynamic analysis of dephosphorization for high phosphorus hot metal and experimental study[J]. The Chinese Journal of Process Engineering, 2009,9(S1):137-141. (张洪彪, 董凌燕, 陈登福, 等. 高磷铁水脱磷的热力学分析及实验研究[J]. 过程工程学报, 2009,9(S1):137-141. doi: 10.3321/j.issn:1009-606X.2009.z1.027

    ZHANG H B, DONG L Y, CHEN D F, et al. Thermodynamic analysis of dephosphorization for high phosphorus hot metal and experimental study[J]. The Chinese Journal of Process Engineering, 2009, 9(S1): 137-141. doi: 10.3321/j.issn:1009-606X.2009.z1.027
    [12]
    M. Allibert, et al. Slag atlas[M]. Düsseldorf: Verlag Stahleisen GmbH, 1981: 58-59.
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.8 %FULLTEXT: 18.8 %META: 62.5 %META: 62.5 %PDF: 18.8 %PDF: 18.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views (9) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return