Citation: | WU Xinchen, LOU Guofeng, XIAO Yongli, FENG Pengbo. Simulation study on granulation characteristics of blast furnace slag water jet[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 92-99. doi: 10.7513/j.issn.1004-7638.2025.03.014 |
[1] |
TANG J H, YU J Y, MA B Y, et al. Research status of high value-added utilization of blast furnace slag[J]. Refractory & Lime, 2022,47(4):24-29. (汤鉴淮, 于敬雨, 马北越, 等. 高炉渣的高附加值利用研究现状[J]. 耐火与石灰, 2022,47(4):24-29. doi: 10.3969/j.issn.1673-7792.2022.4.gwnhcl202204006
TANG J H, YU J Y, MA B Y, et al. Research status of high value-added utilization of blast furnace slag[J]. Refractory & Lime, 2022, 47(4): 24-29. doi: 10.3969/j.issn.1673-7792.2022.4.gwnhcl202204006
|
[2] |
ZHANG L S, LI H, ZHANG H X, et al. Comprehensive utilization and prospect of blast furnace slag[J]. Hot Working Technology, 2018,47(19):20-24. (张立生, 李慧, 张汉鑫, 等. 高炉渣的综合利用及展望[J]. 热加工工艺, 2018,47(19):20-24.
ZHANG L S, LI H, ZHANG H X, et al. Comprehensive utilization and prospect of blast furnace slag[J]. Hot Working Technology, 2018, 47(19): 20-24.
|
[3] |
WANG Z L. Research progress in centrifugal granulation of high temperature liquid slag[J]. Modern Chemical Research, 2023(4):25-27. (王治龙. 高温液态熔渣离心粒化研究进展[J]. 当代化工研究, 2023(4):25-27.
WANG Z L. Research progress in centrifugal granulation of high temperature liquid slag[J]. Modern Chemical Research, 2023(4): 25-27.
|
[4] |
XIAO Y L, HE F, XIE M Q, et al. Study on structure and properties of blast furnace slag[J]. Journal of Wuhan University of Technology, 2022,44(4):12-16. (肖永力, 何峰, 谢梦芹, 等. 高炉熔渣的结构与性质研究[J]. 武汉理工大学学报, 2022,44(4):12-16. doi: 10.3963/j.issn.1671-4431.2022.04.003
XIAO Y L, HE F, XIE M Q, et al. Study on structure and properties of blast furnace slag[J]. Journal of Wuhan University of Technology, 2022, 44(4): 12-16. doi: 10.3963/j.issn.1671-4431.2022.04.003
|
[5] |
MA Y F. Current status and discussion of steel slag treatment technology[J]. Metallurgy and Materials, 2022,42(2):119-120. (马永富. 钢渣处理技术现况和探讨[J]. 冶金与材料, 2022,42(2):119-120. doi: 10.3969/j.issn.1674-5183.2022.02.060
MA Y F. Current status and discussion of steel slag treatment technology[J]. Metallurgy and Materials, 2022, 42(2): 119-120. doi: 10.3969/j.issn.1674-5183.2022.02.060
|
[6] |
TAN F X, HUANG Y W. Preparation of copper and copper alloy powder by water atomization[J]. Metal Functional Materials, 2021,28(3):18-22. (谭芳香, 黄以伟. 水雾化法制备铜及铜合金粉[J]. 金属功能材料, 2021,28(3):18-22.
TAN F X, HUANG Y W. Preparation of copper and copper alloy powder by water atomization[J]. Metal Functional Materials, 2021, 28(3): 18-22.
|
[7] |
WANG Z B, LIU Y, ZHANG Y Z, et al. Experimental study on heat recovery of the process of gas blowing for blast slag[J]. Iron Steel Vanadium Titanium, 2018,39(4):93-98. (王子兵, 刘跃, 张玉柱, 等. 高炉熔渣气淬粒化热量回收试验研究[J]. 钢铁钒钛, 2018,39(4):93-98. doi: 10.7513/j.issn.1004-7638.2018.04.016
WANG Z B, LIU Y, ZHANG Y Z, et al. Experimental study on heat recovery of the process of gas blowing for blast slag[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 93-98. doi: 10.7513/j.issn.1004-7638.2018.04.016
|
[8] |
SUN R J, KANG Y, DING H L, et al. Influence of injection process parameters on granulation effect of blast furnace slag to beads[J]. Iron and Steel, 2024,59(7):159-168. (孙瑞靖, 康月, 丁洪玲, 等. 喷吹工艺参数对高炉渣粒化成珠效果的影响[J]. 钢铁, 2024,59(7):159-168.
SUN R J, KANG Y, DING H L, et al. Influence of injection process parameters on granulation effect of blast furnace slag to beads[J]. Iron and Steel, 2024, 59(7): 159-168.
|
[9] |
FANG W Y, WANG H, ZHU X, et al. Heat transfer characteristics of molten slag in rotary cup granulation process[J]. Iron and Steel, 2020,55(8):151-159. (方维扬, 王宏, 朱恂, 等. 转杯粒化工艺高温熔渣换热数值模拟[J]. 钢铁, 2020,55(8):151-159.
FANG W Y, WANG H, ZHU X, et al. Heat transfer characteristics of molten slag in rotary cup granulation process[J]. Iron and Steel, 2020, 55(8): 151-159.
|
[10] |
ZHANG B, CHENG P, LI Q L, et al. The crushing process of a transverse jet of a liquid under the action of an air film[J]. Acta Physica Sinica, 2021,70(5):230-241. (张彬, 成鹏, 李清廉, 等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报, 2021,70(5):230-241.
ZHANG B, CHENG P, LI Q L, et al. The crushing process of a transverse jet of a liquid under the action of an air film[J]. Acta Physica Sinica, 2021, 70(5): 230-241.
|
[11] |
SUN G T. Study on mechanical centrifugal granulation characteristics of blast furnace slag[D]. Qingdao: Qingdao University, 2020. (孙广彤. 高炉熔渣机械离心粒化特性研究[D]. 青岛:青岛大学, 2020.
SUN G T. Study on mechanical centrifugal granulation characteristics of blast furnace slag[D]. Qingdao: Qingdao University, 2020.
|
[12] |
JI H M. Research on key technologies of mechanical centrifugal granulation of blast furnace slag[D]. Qingdao: Qingdao University of Technology, 2019. (纪慧敏. 高炉熔渣机械离心粒化关键技术研究[D]. 青岛:青岛理工大学, 2019.
JI H M. Research on key technologies of mechanical centrifugal granulation of blast furnace slag[D]. Qingdao: Qingdao University of Technology, 2019.
|
[13] |
WU L, WU H F, WU Y D, et al. Discussion on development of heat recovery technology for high temperature molten slag[J]. Environmental Engineering, 2020,38(9):190-193, 88. (吴龙, 吴华峰, 吴跃东, 等. 高温熔渣热资源回收技术发展及探讨[J]. 环境工程, 2020,38(9):190-193, 88.
WU L, WU H F, WU Y D, et al. Discussion on development of heat recovery technology for high temperature molten slag[J]. Environmental Engineering, 2020, 38(9): 190-193, 88.
|
[14] |
BROUMAND M, AHMED M A, BIROUK M. Experimental investigation of spray characteristics of a liquid jet in a turbu lent subsonic gaseous crossflow[J]. Proceedings of the Combustion Institute, 2019,37(3):3237-3244.
|
[15] |
WANG K, YI C J, HU F C, et al. Study on the flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022,40(6):535-540, 548. (王凯, 仪垂杰, 胡凤超, 等. 高温液态熔渣飞行及碰撞过程研究[J]. 粉末冶金技术, 2022,40(6):535-540, 548.
WANG K, YI C J, HU F C, et al. Study on the flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022, 40(6): 535-540, 548.
|
[16] |
WANG L L, ZHANG Y Z, KE H B, et al. Study on granulation performance of blast furnace slag by gas quenching[J]. Iron Steel Vanadium Titanium, 2020,41(4):82-86. (王丽丽, 张玉柱, 客海滨, 等. 气淬高炉熔渣粒化性能研究[J]. 钢铁钒钛, 2020,41(4):82-86.
WANG L L, ZHANG Y Z, KE H B, et al. Study on granulation performance of blast furnace slag by gas quenching[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 82-86.
|
[17] |
WANG L L, ZHANG Y Z, KE H B, et al. Numerical simulation of molten slag film breakup during granulation process using air-quenching[J]. Journal of Materials and Metallurgy, 2020,19(2):87-93. (王丽丽, 张玉柱, 客海滨, 等. 气淬粒化工艺中熔渣液膜破碎数值模拟[J]. 材料与冶金学报, 2020,19(2):87-93.
WANG L L, ZHANG Y Z, KE H B, et al. Numerical simulation of molten slag film breakup during granulation process using air-quenching[J]. Journal of Materials and Metallurgy, 2020, 19(2): 87-93.
|
[18] |
GAO J, FENG Y H, FENG D L, et al. Centrifugal granulation of liquid slag by wind quenching[J]. Journal of Engineering Thermophysics, 2021,42(5):1288-1292. (高洁, 冯妍卉, 冯黛丽, 等. 风淬作用下液态熔渣的离心粒化[J]. 工程热物理学报, 2021,42(5):1288-1292.
GAO J, FENG Y H, FENG D L, et al. Centrifugal granulation of liquid slag by wind quenching[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1288-1292.
|
[19] |
LIU X H, WEN Z, X Y L, et al. Analysis of slag granulation mechanism and crushing efficiency under gas quenching[J]. Journal of Northeastern University(Natural Science), 2023,44(10):1424-1430. (刘晓宏, 温治, 肖永力, 等. 气淬作用下熔渣粒化机理及破碎效果分析[J]. 东北大学学报(自然科学版), 2023,44(10):1424-1430. doi: 10.12068/j.issn.1005-3026.2023.10.008
LIU X H, WEN Z, X Y L, et al. Analysis of slag granulation mechanism and crushing efficiency under gas quenching[J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1424-1430. doi: 10.12068/j.issn.1005-3026.2023.10.008
|
[20] |
LIU X H, WEN Z, DU Y H, et al. Study on liquid film breaking process of gas quenched granulated slag[J]. Journal of Central South University (Science and Technology), 2022,53(8):2851-2860. (刘晓宏, 温治, 杜宇航, 等. 气淬粒化熔渣液膜破碎过程研究[J]. 中南大学学报(自然科学版), 2022,53(8):2851-2860.
LIU X H, WEN Z, DU Y H, et al. Study on liquid film breaking process of gas quenched granulated slag[J]. Journal of Central South University (Science and Technology), 2022, 53(8): 2851-2860.
|
[21] |
SHAO C, KANG Y, XING H W, et al. Experimental and simulation on the granulation process of blast furnace slag[J]. Iron Steel Vanadium Titanium, 2024,45(1):104-114. (邵宸, 康月, 邢宏伟, 等. 高炉熔渣粒化工艺试验及其数值仿真研究分析[J]. 钢铁钒钛, 2024,45(1):104-114. doi: 10.7513/j.issn.1004-7638.2024.01.016
SHAO C, KANG Y, XING H W, et al. Experimental and simulation on the granulation process of blast furnace slag[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 104-114. doi: 10.7513/j.issn.1004-7638.2024.01.016
|
[22] |
ZHAO K, BAI X J, WANG D X, et al. Numerical simulation on pneumatic atomized water for granulation and heat recovery of molten slag [J/OL]. China Metallurgy, 1-15[2025-01-13]. (赵凯, 白晓军, 王殿新, 等. 气力雾化水用于高温熔渣粒化及热回收的数值模拟[J/OL]. 中国冶金, 1-15[2025-01-13].
ZHAO K, BAI X J, WANG D X, et al. Numerical simulation on pneumatic atomized water for granulation and heat recovery of molten slag [J/OL]. China Metallurgy, 1-15[2025-01-13].
|
[23] |
LIU X H, WEN Z, DU Y H, et al. Numerical simulation of the slag granulation process in gas quenching under multi-influencing factors[J]. Iranian Journal of Science and Technology, Trans actions of Mechanical Engineering, 2023,47(4):1733-1745. doi: 10.1007/s40997-023-00640-2
|
[24] |
ZHANG X Y, XU N W, LI X M, et al. Numerical simulation of centrifugal granulation characteristics of slag optimized by auxiliary gas quenching winds[J]. The Chinese Journal of Process Engineering, 2024,24(5):523-532. (张馨艺, 徐宁文, 李小明, 等. 辅助气淬风优化熔渣离心粒化特性数值模拟[J]. 过程工程学报, 2024,24(5):523-532.
ZHANG X Y, XU N W, LI X M, et al. Numerical simulation of centrifugal granulation characteristics of slag optimized by auxiliary gas quenching winds[J]. The Chinese Journal of Process Engineering, 2024, 24(5): 523-532.
|
[25] |
LIAO B, ZHANG G F, WANG L H, et al. Deformation and breakup behaviors of drop in ambient liquid under impact[J]. Journal of Experimental in Fluid Mechanics, 2016,30(5):9-16. (廖斌, 张桂夫, 王鲁海, 等. 冲击作用下液滴在环境液体中的变形破碎行为[J]. 实验流体力学, 2016,30(5):9-16. doi: 10.11729/syltlx20160029
LIAO B, ZHANG G F, WANG L H, et al. Deformation and breakup behaviors of drop in ambient liquid under impact[J]. Journal of Experimental in Fluid Mechanics, 2016, 30(5): 9-16. doi: 10.11729/syltlx20160029
|
[26] |
GUO J P, WANG Y B, BAI F Q, et al. Unstable breakup of a power-law liquid fuel jet in the presence of a gas crossflow[J]. Fuel, 2020,263:116606. doi: 10.1016/j.fuel.2019.116606
|
[27] |
LI B. Simulation study on gas quenching and granulation of modified blast furnace slag[D]. Tangshan: North China University of Science and Technology, 2022. (李兵. 调质高炉熔渣气淬粒化模拟研究[D]. 唐山:华北理工大学, 2022.
LI B. Simulation study on gas quenching and granulation of modified blast furnace slag[D]. Tangshan: North China University of Science and Technology, 2022.
|
[28] |
ZHANG B W. Study on multiphase flow and atomization characteristic in water atomization process[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023. (张博文. 水雾化过程多相流动及雾化规律探究[D]. 北京:北京建筑大学, 2023.
ZHANG B W. Study on multiphase flow and atomization characteristic in water atomization process[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023.
|
[29] |
KASHANJ S, KEBRIAEE A. The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets[J]. Chemical Engineering Science, 2019,206:235-248. doi: 10.1016/j.ces.2019.05.015
|
[30] |
ZHANG Y, XU J, CHANG Q, et al. Bi-layer coarse-grained DPM of gas-solid systems with mesoscale heterogeneity re solved[J]. Chemical Engineering Science, 2022,263:118058. doi: 10.1016/j.ces.2022.118058
|