Citation: | HU Yanzhuo, SHEN Zhenzhong, HAN Shaohui, LI Chenxiao, YAO Xin, WANG Shuhuan. Research status and prospects of reduction and upgrading technology of converter steel slag under the Dual-Carbon background[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 81-91. doi: 10.7513/j.issn.1004-7638.2025.03.013 |
[1] |
YIN R Y. Essence and common law of a process-oriented manufacturing process[J]. Iron & Steel, 2023,58(2):1-7. (殷瑞钰. 流程型制造流程的本质与共性规律[J]. 钢铁, 2023,58(2):1-7.
YIN R Y. Essence and common law of a process-oriented manufacturing process[J]. Iron & Steel, 2023, 58(2): 1-7.
|
[2] |
HORII K, TSUTSUMI N, KATO T, et al. Overview of iron/steel slag application and development of new utilization technologies[J]. Nippon Steel & Sumitomo Metal Technical Report, 2015,109(109):5.
|
[3] |
CUI X Y, NA X Z. Technologies and prospects for resource utilization of steel slag[J]. China Metallurgy, 2024,34(10):16-25. (崔心宇, 那贤昭. 钢渣资源化技术及展望[J]. 中国冶金, 2024,34(10):16-25.
CUI X Y, NA X Z. Technologies and prospects for resource utilization of steel slag[J]. China Metallurgy, 2024, 34(10): 16-25.
|
[4] |
ZHANG X, CHEN J, JIANG J, et al. The potential utilization of slag generated from iron and steelmaking industries: A review[J]. Environ Geochem Health, 2020,42:1321. doi: 10.1007/s10653-019-00419-y
|
[5] |
SHANGGUAN F Q, LIU Z D, YIN R Y. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China[J]. China Metallurgy, 2021,31(9):15-20. (上官方钦, 刘正东, 殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究[J]. 中国冶金, 2021,31(9):15-20.
SHANGGUAN F Q, LIU Z D, YIN R Y. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China[J]. China Metallurgy, 2021, 31(9): 15-20.
|
[6] |
ZHAO J H, YAN P Y, WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production, 2017,156:50. doi: 10.1016/j.jclepro.2017.04.029
|
[7] |
YANG G, LI D J, LI B Y, et al. Development of key unit technology with high scrap ratio in converter steelmaking[C]// Chinese Society of Metals. Proceedings of the 14th China Iron and Steel Annual Conference-4. Steelmaking and continuous casting. State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Iron & Steel Research Institutes; 2023: 5. (杨光, 李德军, 李博洋, 等. 转炉高废钢比冶炼的关键单元技术进展[C]//中国金属学会. 第十四届中国钢铁年会论文集—4. 炼钢与连铸. 海洋装备用金属材料及其应用国家重点实验室;鞍钢集团钢铁研究院;2023: 5.
YANG G, LI D J, LI B Y, et al. Development of key unit technology with high scrap ratio in converter steelmaking[C]// Chinese Society of Metals. Proceedings of the 14th China Iron and Steel Annual Conference-4. Steelmaking and continuous casting. State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Iron & Steel Research Institutes; 2023: 5.
|
[8] |
HAO Y D, WANG H G, WU L, et al. Summary and prospect of steel slag treatment technology at the “double carbon” goal[J]. Multipurpose Utilization of Mineral Resources, 2024,45(6):67-73. (郝以党, 王会刚, 吴龙, 等. 双碳目标下钢渣处理技术综述及展望[J]. 矿产综合利用, 2024,45(6):67-73. doi: 10.3969/j.issn.1000-6532.2024.06.011
HAO Y D, WANG H G, WU L, et al. Summary and prospect of steel slag treatment technology at the “double carbon” goal[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 67-73. doi: 10.3969/j.issn.1000-6532.2024.06.011
|
[9] |
TONG S, LI C X, WANG S H, et al. Evaluation of dephosphorization and energy saving and emission reduction of molten iron by converter gasification dephosphorization slag[J]. Steelmaking, 2023,39(4):88-92. (佟帅, 李晨晓, 王书桓, 等. 转炉气化脱磷渣用于铁水脱磷及节能减排评估研究[J]. 炼钢, 2023,39(4):88-92.
TONG S, LI C X, WANG S H, et al. Evaluation of dephosphorization and energy saving and emission reduction of molten iron by converter gasification dephosphorization slag[J]. Steelmaking, 2023, 39(4): 88-92.
|
[10] |
CHANG S Q. Collaborative modification and resource blastfurnace slag and utilization of converter slag[D]. Inner Mongolia: Inner Mongolia University of Science and Technology, 2023. (常仕琦. 高炉渣与转炉渣协同改质及资源化利用[D]. 内蒙古:内蒙古科技大学, 2023.
CHANG S Q. Collaborative modification and resource blastfurnace slag and utilization of converter slag[D]. Inner Mongolia: Inner Mongolia University of Science and Technology, 2023.
|
[11] |
WANG L, BU X Z, CHEN W, et al. Experimental research on magnetic separation and recovery of converter steel slag[J]. Mining Research and Development, 2022,42(11):48-53. (王亮, 卜显忠, 陈伟, 等. 转炉钢渣磁选回收试验研究[J]. 矿业研究与开发, 2022,42(11):48-53.
WANG L, BU X Z, CHEN W, et al. Experimental research on magnetic separation and recovery of converter steel slag[J]. Mining Research and Development, 2022, 42(11): 48-53.
|
[12] |
ZHAO J, HU W, NI W, et al. The effect of removing hard-to-grind minerals from steel slag on efficient grinding and hydration activity[J]. Journal of Sustainable Metallurgy, 2023,9(3):1315-1328. doi: 10.1007/s40831-023-00728-8
|
[13] |
SHI L C, WANG N S, CHENG G. Dry magnetic separation technology for the recovery of iron minerals in fine-grained steel slag[J]. Engineering Review, 2020: 7-16.
|
[14] |
GAO F. Changes of RO phase and kinetics of iron oxide at high temperature in the process of steel slag reduction reconstruction[D]. Guangzhou: South China University of Technology, 2016. (高凡. 钢渣还原重构过程中RO相变化及铁氧化物高温还原动力学研究[D]. 广州: 华南理工大学, 2016.
GAO F. Changes of RO phase and kinetics of iron oxide at high temperature in the process of steel slag reduction reconstruction[D]. Guangzhou: South China University of Technology, 2016.
|
[15] |
LI Y. Basic research on smelting reduction and recovery of Fe and P from steel slag in converter[D]. Shenyang: Northeastern University, 2011. (李勇. 转炉钢渣熔融还原同时回收Fe、P的基础研究[D]. 沈阳: 东北大学, 2011.
LI Y. Basic research on smelting reduction and recovery of Fe and P from steel slag in converter[D]. Shenyang: Northeastern University, 2011.
|
[16] |
SHI X Y. Research on kinetics of converter slag carbothermic reduction process under microwave field[D]. Tangshan: Hebei United University, 2013. (石鑫越. 微波碳热还原转炉渣脱磷动力学研究[D]. 唐山:河北联合大学, 2013.
SHI X Y. Research on kinetics of converter slag carbothermic reduction process under microwave field[D]. Tangshan: Hebei United University, 2013.
|
[17] |
HE S, LIN L, LIU Y Q, et al. Recovery of valuable elements from molten modified phosphorous steel slag by carbothermic reduction[J]. Iron & Steel, 2022,57(6):167. (何赛, 林路, 刘亚琴, 等. 熔融改质含磷钢渣碳热还原回收有价元素试验[J]. 钢铁, 2022,57(6):167.
HE S, LIN L, LIU Y Q, et al. Recovery of valuable elements from molten modified phosphorous steel slag by carbothermic reduction[J]. Iron & Steel, 2022, 57(6): 167.
|
[18] |
ZHANG B, LUO G, HAO S, et al. Thermodynamic simulation and computational study of the carbothermal reduction of converter steel slag[J]. JOM, 2024: 1-9.
|
[19] |
ZHANG B K, LUO G P, HAO S, et al. Optimization of steel slag carbothermal reduction process conditions[J]. Journal of Iron and Steel Research, 2024,36(6):794-805. (张博康, 罗果萍, 郝帅, 等. 钢渣碳热还原工艺条件优化研究[J]. 钢铁研究学报, 2024,36(6):794-805.
ZHANG B K, LUO G P, HAO S, et al. Optimization of steel slag carbothermal reduction process conditions[J]. Journal of Iron and Steel Research, 2024, 36(6): 794-805.
|
[20] |
YUNOS N F M, NAJMI N H, MUNUSAMY S R R, et al. Effect of high temperature on reduction-controlling reaction rate of agricultural waste chars and coke with steelmaking slag[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138: 175-183.
|
[21] |
XU L, LI X, LIU Y, et al. Recovery of low phosphorus iron from steel slag using secondary aluminum dross as the reductant[J]. Journal of Environmental Chemical Engineering, 2023,11(5):110973. doi: 10.1016/j.jece.2023.110973
|
[22] |
GUO H, YIN S, YU Q, et al. Iron recovery and active residue production from Basic Oxygen Furnace(BOF)slag for supplementary cementitious materials[J]. Resources, Conservation and Recycling, 2018,129:209. doi: 10.1016/j.resconrec.2017.10.027
|
[23] |
ZHOU C G, CHEN Q G, AI L Q, et al. Dephosphorization behavior by low temperature gasification of converter slag[J]. Iron & Steel, 2022,57(11):64-76. (周朝刚, 陈庆功, 艾立群, 等. 转炉熔渣低温气化脱磷行为[J]. 钢铁, 2022,57(11):64-76.
ZHOU C G, CHEN Q G, AI L Q, et al. Dephosphorization behavior by low temperature gasification of converter slag[J]. Iron & Steel, 2022, 57(11): 64-76.
|
[24] |
LI G X. Study on selective enrichment and separation of iron and phosphoruselements in phosphorus-containing converter slag[D]. Zhenjiang: Jiangsu University, 2022. (李果轩. 含磷转炉渣中铁、磷元素选择性富集与分离研究[D]. 镇江:江苏大学, 2022.
LI G X. Study on selective enrichment and separation of iron and phosphoruselements in phosphorus-containing converter slag[D]. Zhenjiang: Jiangsu University, 2022.
|
[25] |
LIN L, BAO Y P, WANG M, et al. Influence of titania modification on phosphorus enrichment in P-bearing steelmaking slag[J]. Chinese Journal of Engineering, 2014,36(8):1013. (林路, 包燕平, 王敏, 等. 二氧化钛改质对含磷转炉渣中磷富集行为的影响[J]. 北京科技大学学报, 2014,36(8):1013.
LIN L, BAO Y P, WANG M, et al. Influence of titania modification on phosphorus enrichment in P-bearing steelmaking slag[J]. Chinese Journal of Engineering, 2014, 36(8): 1013.
|
[26] |
WANG Z, SUN Y, SRIDHAR S, et al. Effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags[J]. Metallurgical and Materials Transactions B, 2015,46:537-541. doi: 10.1007/s11663-015-0303-4
|
[27] |
ZHOU C, LI J, CHEN Q, et al. Leaching behavior and microstructure of phosphorus in converter slag[J]. Journal of Iron and Steel Research International, 2024: 1-15.
|
[28] |
DU C, ZHANG Y, YU W. A method for high value-added utilization of BOF slag: Towards slag recycling and phosphorus recovery[J]. Process Safety and Environmental Protection, 2024,190:586-597.
|
[29] |
SHIGERU S, IOKA D, HAYASHI T, et al. Recovery of phosphate from unused resources[J]. Phosphorus Research Bulletin, 2011,25:18. doi: 10.3363/prb.25.18
|
[30] |
IWAMA T, INOUE R, NAKASE K, et al. Separation of phosphorus from phosphorus-concentrated steelmaking slag[J]. ISIJ International, 2024,64(5):785-794. doi: 10.2355/isijinternational.ISIJINT-2023-495
|
[31] |
DING M. Utilization of vanadium extraction from vanadium-bearing steel slag[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 631(1): 012056.
|
[32] |
LIU W, FANG Y B, KE J J. Overview of comprehensive utilization research on chemical metallurgy from Panzhihua mineral resources by Chinese Academy of Sciences[J]. Journal of Engineering Studies, 2021,13(4):381-391. (刘伟, 方一兵, 柯家骏. 中国科学院对攀枝花钒钛磁铁矿综合利用之化工冶金研究回顾[J]. 工程研究-跨学科视野中的工程, 2021,13(4):381-391. doi: 10.3724/SP.J.1224.2021.00381
LIU W, FANG Y B, KE J J. Overview of comprehensive utilization research on chemical metallurgy from Panzhihua mineral resources by Chinese Academy of Sciences[J]. Journal of Engineering Studies, 2021, 13(4): 381-391. doi: 10.3724/SP.J.1224.2021.00381
|
[33] |
WU E H, ZHU R, YANG S L, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015,36(5):40-46. (吴恩辉, 朱荣, 杨绍利, 等. 提钒尾渣含碳球团电弧炉熔融还原热力学分析与试验[J]. 钢铁钒钛, 2015,36(5):40-46. doi: 10.7513/j.issn.1004-7638.2015.05.009
WU E H, ZHU R, YANG S L, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 40-46. doi: 10.7513/j.issn.1004-7638.2015.05.009
|
[34] |
LI K, SONG W C, ZHENG Q, et al. Vanadium extraction by acid leaching after calcification of molten vanadium slag[J]. Iron Steel Vanadium Titanium, 2013,34(5):15-18, 22. (李昆, 宋文臣, 郑权, 等. 熔融态钒渣氧化钙化后酸浸研究[J]. 钢铁钒钛, 2013,34(5):15-18, 22. doi: 10.7513/j.issn.1004-7638.2013.05.003
LI K, SONG W C, ZHENG Q, et al. Vanadium extraction by acid leaching after calcification of molten vanadium slag[J]. Iron Steel Vanadium Titanium, 2013, 34(5): 15-18, 22. doi: 10.7513/j.issn.1004-7638.2013.05.003
|
[35] |
SONG W C, LI H. A new process for vanadium extraction from molten vanadium slag by direct oxidation and sodium activating method[J]. Iron Steel Vanadium Titanium, 2012,33(6):1-5. (宋文臣, 李宏. 熔融钒渣直接氧化钠化提钒新工艺研究[J]. 钢铁钒钛, 2012,33(6):1-5. doi: 10.7513/j.issn.1004-7638.2012.06.001
SONG W C, LI H. A new process for vanadium extraction from molten vanadium slag by direct oxidation and sodium activating method[J]. Iron Steel Vanadium Titanium, 2012, 33(6): 1-5. doi: 10.7513/j.issn.1004-7638.2012.06.001
|
[36] |
ATTAH M, HILDOR F, YILMAZ D, et al. Vanadium recovery from steel converter slag utilised as an oxygen carrier in oxygen carrier aided combustion (OCAC)[J]. Journal of Cleaner Production, 2021,293:126159. doi: 10.1016/j.jclepro.2021.126159
|
[37] |
XIANG J, HUANG Q, LÜ X, et al. Effect of mechanical activation treatment on the recovery of vanadium from converter slag[J]. Metallurgical and Materials Transactions B, 2017,48:2759-2767. doi: 10.1007/s11663-017-1033-6
|
[38] |
XIANG J, HUANG Q, LÜ X, et al. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag[J]. Journal of hazardous materials, 2017,336:1-7. doi: 10.1016/j.jhazmat.2017.04.060
|
[39] |
SHIN D J, GAO X, UEDA S, et al. Separation of phosphorus and manganese from steelmaking slag by selective reduction[J]. Metallurgical and Materials Transactions B, 2019,50:1248-1259. doi: 10.1007/s11663-019-01556-6
|
[40] |
WU Z J, JIANG B F, LIU W M, et al. Selective recovery of valuable components from converter steel slag for preparing multidoped FePO4[J]. Industrial & engineering chemistry research, 2011,50(24):13778-13788.
|
[41] |
RASHID W T. Extraction of manganese element from electric arc furnace steel slag (EAFS) by liquid-liquid extraction (LLE) method[J]. Journal of Engineering, 2022, 28(6).
|
[42] |
KIM S J, SUZUKI J, GAO X, et al. A kinetic model to simulate the reaction between slag and matte for the production of ferromanganese alloy from steelmaking slag[J]. Journal of Sustainable Metallurgy, 2016,2:141-151. doi: 10.1007/s40831-016-0042-z
|
[43] |
GUO X, YAN Y. Research on waste heat recovery and recycling of hot steel slag[J]. Resources Economization & Environmental Protection, 2024(08):36-39. (郭新, 闫燚. 热态钢渣余热回收与循环利用研究[J]. 资源节约与环保, 2024(08):36-39. doi: 10.3969/j.issn.1673-2251.2024.08.009
GUO X, YAN Y. Research on waste heat recovery and recycling of hot steel slag[J]. Resources Economization & Environmental Protection, 2024(08): 36-39. doi: 10.3969/j.issn.1673-2251.2024.08.009
|
[44] |
ZHAO X Z, YU H M. The theory analysis and practice of heat recovery utilization in converter steel-slag treatment process[J]. Xinjiang Iron and Steel, 2015(4):42-44. (赵旭章, 俞海明. 转炉钢渣热能回收利用的理论分析和实践[J]. 新疆钢铁, 2015(4):42-44. doi: 10.3969/j.issn.1672-4224.2015.04.019
ZHAO X Z, YU H M. The theory analysis and practice of heat recovery utilization in converter steel-slag treatment process[J]. Xinjiang Iron and Steel, 2015(4): 42-44. doi: 10.3969/j.issn.1672-4224.2015.04.019
|
[45] |
CHEN W, WANG M, LIU L, et al. Three-stage method energy–mass coupling high-efficiency utilization process of high-temperature molten steel slag[J]. Metallurgical and Materials Transactions B, 2021,52(5):3004-3015. doi: 10.1007/s11663-021-02213-7
|
[46] |
LI P, ZHANG X, WANG J, et al. Process characteristics of catalytic thermochemical conversion of oily sludge with addition of steel slag towards energy and iron recovery[J]. Journal of Environmental Chemical Engineering, 2020,8(4):103911. doi: 10.1016/j.jece.2020.103911
|