Citation: | FAN Yuting, PENG Li, LI Jingmao, QIN Haixu. Microstructure and mechanical properties of TA16 bar with different heat treatment temperatures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 53-59. doi: 10.7513/j.issn.1004-7638.2025.03.009 |
[1] |
CHEN W, XIAO L, SUN Q Y, et al. Effect of the initial grain size on grain refinement in Ti-2Al-2.5Zr alloy subjected to multi-impact process[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012,554:86-94. doi: 10.1016/j.msea.2012.06.019
|
[2] |
CHEN W, XIAO L, SUN Q, et al. Effect of the initial grain size on grain refinement in Ti-2Al-2.5Zr alloy subjected to multi-impact process[J]. Materials Science & Engineering A, 2012, 554: 86-94.
|
[3] |
TANG Z P, PENG C F, HE X. Effects of hydrogen on fatigue crack propagation rate of Ti-2Al-2.5Zr titanium alloy[J]. Nuclear Power Engineering, 2003,24(6):555-558.
|
[4] |
XIAO H E, BAO S, JUN Y, et al. Effects of hydrogen on fatigue property for Ti-2Al-2.5Zr titanium alloy[J]. Heat Treatment of Metals, 2002(27).
|
[5] |
WANG S, LI P, WU Y, et al. Micromechanical behavior of Ti-2Al-2.5Zr alloy under cyclic loading using crystal plasticity modeling[J]. International Journal of Fatigue, 2022(161): 106890.
|
[6] |
WANG S, NING Z, LI P, et al. Study on the crack nucleation mechanism of Ti-2Al-2.5 Zr alloy in low cycle fatigue: Quasi in-situ experiments and crystal plasticity simulation[J]. International Journal of Plasticity, 2023,165:103604. doi: 10.1016/j.ijplas.2023.103604
|
[7] |
LI H, YU J, JIA W, et al. Investigation on the plastic anisotropic deformation behavior of Α-phase titanium alloy Ti-2Al-2.5Zr: Mechanism analysis and crystal plasticity modeling[J]. SSRN, 2024.
|
[8] |
XIE L J, ZHU S P. Effect of extrusion speed on hot extrusion forming of TA16 titanium alloy tube blank[J]. World Nonferrous Metals, 2021(19):132-133. (谢林均, 朱栓平. 挤压速度对TA16钛合金管坯热挤压成型的影响[J]. 世界有色金属, 2021(19):132-133. doi: 10.3969/j.issn.1002-5065.2021.19.065
XIE L J, ZHU S P. Effect of extrusion speed on hot extrusion forming of TA16 titanium alloy tube blank[J]. World Nonferrous Metals, 2021(19): 132-133. doi: 10.3969/j.issn.1002-5065.2021.19.065
|
[9] |
ZHANG Y F, YU Z T, YU S, et al. Effects of cold rolling and heat treatment on microstructure and properties of TA16 titanium alloy tubes[J]. Titanium Industry Progress, 2012,29(3):11-13. (张亚峰, 于振涛, 余森, 等. 冷轧及热处理对TA16钛合金管材组织与性能的影响[J]. 钛工业进展, 2012,29(3):11-13. doi: 10.3969/j.issn.1009-9964.2012.03.003
ZHANG Y F, YU Z T, YU S, et al. Effects of cold rolling and heat treatment on microstructure and properties of TA16 titanium alloy tubes[J]. Titanium Industry Progress, 2012, 29(3): 11-13. doi: 10.3969/j.issn.1009-9964.2012.03.003
|
[10] |
WU J, WANG L, LIU X. Evolution of microstructure and microtexture in Ti-2A1-2.5Zr during one pass cold Pilgering[J]. Rare Metal Materials and Engineering, 2022,51(4):1145-1151. (吴军, 王理, 刘肖, 等. Ti-2Al-2.5Zr单道次皮尔格轧制过程中显微组织和织构的演化(英文)[J]. 稀有金属材料与工程, 2022,51(4):1145-1151.
WU J, WANG L, LIU X. Evolution of microstructure and microtexture in Ti-2A1-2.5Zr during one pass cold Pilgering[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1145-1151.
|
[11] |
LUO Q, WANG L, LIU S W. Effects of hydrogen on the performance of the TA16 titanium alloy[J]. Ordnance Material Science and Engineering, 2011,34(2):51-54. (罗强, 王理, 刘思维. 氢对TA16钛合金性能影响研究[J]. 兵器材料科学与工程, 2011,34(2):51-54. doi: 10.3969/j.issn.1004-244X.2011.02.015
LUO Q, WANG L, LIU S W. Effects of hydrogen on the performance of the TA16 titanium alloy[J]. Ordnance Material Science and Engineering, 2011, 34(2): 51-54. doi: 10.3969/j.issn.1004-244X.2011.02.015
|
[12] |
HE X, SHEN B L, YUE J, et al. Effects of hydrogen on fatigue property for Ti-2Al-2.5Zr titanium alloy[J]. Heat Treatment of Metals, 2002,027(12):10-13. (何晓, 沈保罗, 岳俊, 等. 氢对Ti-2Al-2.5Zr钛合金疲劳性能的影响[J]. 金属热处理, 2002,027(12):10-13. doi: 10.3969/j.issn.0254-6051.2002.12.004
HE X, SHEN B L, YUE J, et al. Effects of hydrogen on fatigue property for Ti-2Al-2.5Zr titanium alloy[J]. Heat Treatment of Metals, 2002, 027(12): 10-13. doi: 10.3969/j.issn.0254-6051.2002.12.004
|
[13] |
ZHANG C, LI B, WU J, et al. Effect of surface nanocrystallization on thermomechanical fatigue behavior of Ti-2Al-2.5Zr alloy tube[J]. Nuclear Engineering and Design, 2024,419:112976. doi: 10.1016/j.nucengdes.2024.112976
|
[14] |
CHEN G, CHU T, CUI Y, et al. Effect of surface nanocrystallization on high-cycle fatigue behavior of Ti-2Al-2.5Zr alloy tube[J]. International Journal of Fatigue, 2022,158:106735. doi: 10.1016/j.ijfatigue.2022.106735
|
[15] |
CHEN S C, WANG L, LI Y L. Effect of heat treatment on microstructure and mechanical properties of TA16 alloy rods[J]. Heat Treatment of Metals, 2018,43(12):195-199. (陈胜川, 王璐, 李永林, 等. 热处理对TA16合金棒材组织和力学性能的影响[J]. 金属热处理, 2018,43(12):195-199.
CHEN S C, WANG L, LI Y L. Effect of heat treatment on microstructure and mechanical properties of TA16 alloy rods[J]. Heat Treatment of Metals, 2018, 43(12): 195-199.
|
[16] |
CHEN H Q, ZHAO X D, CHAI Y S, et al. Recovery and recrystallization during thermo-mechanical processing of Ti-6.5Al-1.5Zr-3.5Mo-0.3Si alloy[C]//Materials Science Forum. Trans Tech Publications Ltd, 2014, 783: 549-555.
|
[17] |
YANG G, SUN L J, ZHANG L N, et al. Annihilation of deformation twins and formation of annealing twins[J]. Journal of Iron and Steel Research, 2009,21(2):39-43. (杨钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报, 2009,21(2):39-43.
YANG G, SUN L J, ZHANG L N, et al. Annihilation of deformation twins and formation of annealing twins[J]. Journal of Iron and Steel Research, 2009, 21(2): 39-43.
|
[18] |
CHEN C, HAN D S, SONG Y T, et al. Thermal stability of deformation twins in cryogenic rolled CP-Ti[J]. Materials Characterization, 2023,196:112587. doi: 10.1016/j.matchar.2022.112587
|
[19] |
YAN C K, QU S J, FENG A H, et al. Recent advances of deformation twins in titanium and titanium alloys[J]. Chinese Journal of Rare Metals, 2019,43(5):449-460. (闫辰侃, 曲寿江, 冯艾寒, 等. 钛及钛合金形变孪晶的研究进展[J]. 稀有金属, 2019,43(5):449-460.
YAN C K, QU S J, FENG A H, et al. Recent advances of deformation twins in titanium and titanium alloys[J]. Chinese Journal of Rare Metals, 2019, 43(5): 449-460.
|
[20] |
XU Y L, WU X W, LAI M J, et al. Research progress on titanium alloys deformation textures and their influences[J]. Foundry Technology, 2022,43(12):1021-1031. (许亚利, 吴小文, 赖敏杰, 等. 钛合金变形织构及其影响研究进展[J]. 铸造技术, 2022,43(12):1021-1031.
XU Y L, WU X W, LAI M J, et al. Research progress on titanium alloys deformation textures and their influences[J]. Foundry Technology, 2022, 43(12): 1021-1031.
|
[21] |
BIELER T R, SEMIATIN S L. The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V[J]. International Journal of Plasticity, 2002,18(9):1165-1189. doi: 10.1016/S0749-6419(01)00057-2
|
[22] |
UTA E, GEY N, BOCHER P, et al. Texture heterogeneities in αp/αs titanium forging analysed by EBSD-relation to fatigue crack propagation[J]. Journal of microscopy, 2009,233(3):451-459. doi: 10.1111/j.1365-2818.2009.03141.x
|
[23] |
LÜTJERING G, WILLIAMS J C. Titanium[M]. 2nd edition. Berlin: Springer-Verlag, 2007.
|
[24] |
ROY S, SUWAS S. Unique texture transition during sub β-transus annealing of warm-rolled Ti-6Al-4V alloy: Role of orientation dependent spheroidization[J]. Scripta Materialia, 2018, 154:1-7.
|