Citation: | YIN Yanchao. Influence of pre-strain and heat treatment on subsequent deformation behavior of Ti6321 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 45-52. doi: 10.7513/j.issn.1004-7638.2025.03.008 |
[1] |
GORYNIN I V. Titanium alloy for marine application[J]. Materials Science and Engineering A, 1999,263(2):112-116. doi: 10.1016/S0921-5093(98)01180-0
|
[2] |
SCHUTZ R W, SCATURRO M R. An overview of current and candidate titanium alloy application on U. S. navy surface ships[J]. Naval Engineers Journal, 1991(5):175-191.
|
[3] |
ORYSHCHENKO A S, GORYNIN I V, LEONOV V P, et al. Marine titanium alloys: present and future[J]. Inorganic materials: applied research, 2015,6(6):571-579. doi: 10.1134/S2075113315060106
|
[4] |
YU X Y, JI H T, ZHANG H, et al. Experimental and numerical investigation on the bauschinger effect during cold forming of TC4ELI alloy[J]. International Journal of Material Forming, 2022,15(2):1-10.
|
[5] |
YIN Y C, ZHANG S F, XU Y L, et al. Influence of pre-strain on deformation behavior of TC4ELI titanium alloy[J]. Development and Application of Materials, 2023,38(1):66-72. (尹艳超, 张帅锋, 许亚利, 等. 预应变对TC4ELI钛合金变形行为的影响[J]. 材料开发与应用, 2023,38(1):66-72.
YIN Y C, ZHANG S F, XU Y L, et al. Influence of pre-strain on deformation behavior of TC4ELI titanium alloy[J]. Development and Application of Materials, 2023, 38(1): 66-72.
|
[6] |
HEMEN R. The bauschinger effect in 6-6-2 titanium alloy and its influence on advanced artillery projectiles[R]. Watertown: U. S. Army Materials Technology Laboratory, 1989.
|
[7] |
DAI Q, WANG F, ZHANG J, et al. Effect of pre-strain on failure assessment of titanium pressure vessel with crack[J]. Rare Metal Materials and Engineering, 2020,49(10):3301-3308.
|
[8] |
MAYKUTH D J. Residual stresses, stress relief, and annealing of titanium and titanium alloys[R]. Ohio: U. S. Air Force Materials Laboratory, 1968.
|
[9] |
RAE W, RAHIMI S. Effect of stress relaxation on the evolution of residual stress during heat treatment of Ti-6Al-4V[C]. The 14th World Conference on Titanium. 2019.
|
[10] |
CAVALLARO J L. Ti-6Al-2Cb-1Ta-0.8Mo titanium alloy as a structural material for marine applications[R]. Annapolis: U. S. Navy Marine Engineer Laboratory, 1967.
|
[11] |
CHEN H B, LIU T M, LU L W, et al. Influence of pre-strain and heat treatment on subsequent deformation behavior of extruded AZ31 Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2015(11):3604-3610.
|
[12] |
WANG R F, DENG W P, NIU J C, et al. Effect of plastic deformation and stress relief heat treatment on microstructure and properties of 10CrNi5MoV steel plate[J]. Development and Application of Materials, 2019,34(5):16-21,26. (王任甫, 邓晚平, 牛继承, 等. 塑性变形及消应力热处理对10CrNi5MoV钢性能与组织的影响[J]. 材料开发与应用, 2019,34(5):16-21,26.
WANG R F, DENG W P, NIU J C, et al. Effect of plastic deformation and stress relief heat treatment on microstructure and properties of 10CrNi5MoV steel plate[J]. Development and Application of Materials, 2019, 34(5): 16-21,26.
|
[13] |
PEIRS J, VERLEYSEN P, DEGRIECK J. Study of the dynamic bauschinger effect in Ti6Al4V by torsion experiments[J]. The European Physical Journal Conferences, 2012,26:01023. doi: 10.1051/epjconf/20122601023
|
[14] |
PEIRS J, VERLEYSEN P, VERBEKEN K, et al. High strain rate torsion and bauschinger tests on Ti6Al4V[J]. Materials Science Forum, 2012,706-709:774-779. doi: 10.4028/www.scientific.net/MSF.706-709.774
|
[15] |
YU X Y, ZHANG B W. Investigation on bauschinger effect of TC4ELI titanium alloy based on experiment[J]. Die and Mould Industry, 2021,47(9):6-8. (于翔宇, 张博文. TC4 ELI钛合金包申格效应试验研究[J]. 模具工业, 2021,47(9):6-8.
YU X Y, ZHANG B W. Investigation on bauschinger effect of TC4ELI titanium alloy based on experiment[J]. Die and Mould Industry, 2021, 47(9): 6-8.
|
[16] |
FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materials China, 2014(7):385-393. (方志刚, 刘斌, 李国明, 等. 舰船装备材料体系发展与需求分析[J]. 中国材料进展, 2014(7):385-393.
FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materials China, 2014(7): 385-393.
|
[17] |
MAMUN A A, MOAT R J, KELLEHER J, et al. Origin of the bauschinger effect in a polycrystalline material[J]. Materials Science and Engineering A, 2017,707:576-584. doi: 10.1016/j.msea.2017.09.091
|
[18] |
STOLTZ R E, PELLOUX R M. The Bauschinger effect in precipitation strengthened aluminum alloys[J]. Metallurgical Transactions A, 1976,7(8):1295-1306. doi: 10.1007/BF02658814
|
[19] |
WANG Y F, LI C, LING X Y, et al. An overview on the bauschinger effect in metallic materials[J]. China Nuclear Science and Technology Report, 2002(0):410-423. (王延峰, 李聪, 凌绪玉等. 金属材料的包申格效应综述[J]. 中国核科技报告, 2002(0):410-423.
WANG Y F, LI C, LING X Y, et al. An overview on the bauschinger effect in metallic materials[J]. China Nuclear Science and Technology Report, 2002(0): 410-423.
|
[20] |
MACEWEN S R, ELLS C E, WOO O T. The bauschinger effect in Zircaloy-2[J]. Journal of Nuclear Materials, 1981,101:336-349. doi: 10.1016/0022-3115(81)90175-6
|
[21] |
IBRAHIM K, HUSEYIN S, CHUMLYAKOV Y I, et al. The effect of twinning and slip on the bauschinger effect of hadfield steel single crystals[J]. Metallurgiacl Transactions, 2001, 32A: 695-706.
|
[22] |
GERD L, JAMES C, WILLIAMS. Titanium[M]. Berlin: Springer-Verlag. 2007.
|
[23] |
WILLIAMS J C, BAGGERLY R G, PATOU N E. Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metallurgical and Materials Transactions A, 2002,33:837-850.
|
[24] |
YU W X, LÜ Y F, LI S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates[J]. Materials Science and Engineering A, 2015,639:314-319. doi: 10.1016/j.msea.2015.04.083
|
[25] |
AMBARD A, GUÉTAZ L, LOUCHET F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K[J]. Materials Science and Engineering A, 2001, 319: 404-408.
|
[26] |
AKHTAR A. Basal slip and twinning in α-titanium single crystals[J]. Metallurgical and Materials Transactions A, 1975,6:1105-1113. doi: 10.1007/BF02661366
|
[27] |
ZULFIKAR H A K, WANG Z R. Bauschinger effect in a modified Zr-2.5wt% Nb pressure tube material[J]. Materials Science and Engineering A: 1993, 171(1-2): 55-63
|
[28] |
WANG Z Q, ALEXANDRU D S, MA D, et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: application to additive manufacturing[J]. Materials Science and Engineering A, 2017,7:585-592.
|
[29] |
HUANG Z, YUAN W H, ZHU J J. Low temperature stress relaxation and morphology evolution of Ti-6.5Al-2Zr-1Mo-1V titanium alloys[J]. Rare Metal Materials and Engineering, 2002,51(1):83-91.
|