LU Ruifang, QIU Shuxing, ZHAO Qing’e, LÜ Xueming, HUANG Jiaxu, LIU Yadong. Comparison of the reducing activity of coke powder and semi-coke and its application in the carbonization process of Ti-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 32-40. doi: 10.7513/j.issn.1004-7638.2025.03.006
Citation: LU Ruifang, QIU Shuxing, ZHAO Qing’e, LÜ Xueming, HUANG Jiaxu, LIU Yadong. Comparison of the reducing activity of coke powder and semi-coke and its application in the carbonization process of Ti-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 32-40. doi: 10.7513/j.issn.1004-7638.2025.03.006

Comparison of the reducing activity of coke powder and semi-coke and its application in the carbonization process of Ti-bearing blast furnace slag

doi: 10.7513/j.issn.1004-7638.2025.03.006
  • Received Date: 2025-01-13
  • Publish Date: 2025-06-30
  • In the process of titanium extraction from Ti-bearing blast furnace slag by “high temperature carbonization and low temperature chlorination”, high temperature carbonization is very critical and important. The carbonaceous reducing agent used in the high temperature carbonization process directly affects the cost of the process and the carbonization rate of titanium dioxide in the blast furnace slag, so the selection of more high-quality and low-cost carbonaceous reducing agent is one of the important means to improve the quality and reduce the cost of high temperature carbonization process. In this study, semi-coke and coke powder with different particle size ranges were obtained by grinding and sieving as raw materials. By XRD, TGA, BET and other analytical methods, the difference of the reducing activity between semi-coke and coke powder was studied. The particle size of semi-coke corresponding to coke powder with the same reduction reaction activity was proposed, and the industrial application test was carried out. The results show that the graphitization degree of semi-coke is much lower than that of coke powder. In the range of conversion rate of 0.3~0.8, the average activation energy of semi-coke is lower than that of coke powder. When the particle size is more than 0.150 mm, the specific surface area of semi-coke is greater than that of coke powder, contributing to its higher reactivity than that of coke powder. Based on these, it is proposed that the particle size of semi-coke should be collaboratively controlled in the range of 1~2 mm and 0.150~1 mm. The industrial test results reveal that the power consumption per ton of slag and carbonization rate are the same as those of coke powder with particle size distribution currently used, when this above range-controlled semi-coke is applied to the high temperature carbonization process of Ti-bearing blast furnace slag.
  • [1]
    HAO B C, LI Z Y, JIA D F, et al. Comprehensive utilization of blast furnace slag containing titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(6):1-2. (郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020(6):1-2.

    HAO B C, LI Z Y, JIA D F, et al. Comprehensive utilization of blast furnace slag containing titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 1-2.
    [2]
    WANG J X, YUE D, WEN L Y, et al. Experimental characterization of chemical mineral composition and morphology of titanium in carbonized slag particles[J]. Journal of Materials Research and Technology, 2025,34:1571-1581. doi: 10.1016/j.jmrt.2024.12.175
    [3]
    LONG Y, ZHANG X J, LI S L, et al. Study on influence factors of high temperature carbonization of Ti-bearing blast furnace slag for preparation of TiC[J]. Journal of Chongqing University of Technology( Natural Science), 2017,31(8):93-97,119. (龙雨, 张新建, 李书兰, 等. 含钛高炉渣高温碳化制备TiC影响因素研究[J]. 重庆理工大学学报(自然科学), 2017,31(8):93-97,119.

    LONG Y, ZHANG X J, LI S L, et al. Study on influence factors of high temperature carbonization of Ti-bearing blast furnace slag for preparation of TiC[J]. Journal of Chongqing University of Technology( Natural Science), 2017, 31(8): 93-97,119.
    [4]
    PENG Z F, ZHANG J L, BI C G, et al. Effect of coke powder and semi-coke on combustion characteristics of blast furnace blended coal[J]. Iron and Steel, 2019,54(12):10-18. (彭政富, 张建良, 毕传光, 等. 焦粉与兰炭对高炉混煤燃烧特性的影响[J]. 钢铁, 2019,54(12):10-18. doi: 10.13228/j.boyuan.issn0449-749x.20190076

    PENG Z F, ZHANG J L, BI C G, et al. Effect of coke powder and semi-coke on combustion characteristics of blast furnace blended coal[J]. Iron and Steel, 2019, 54(12): 10-18. doi: 10.13228/j.boyuan.issn0449-749x.20190076
    [5]
    FU L L, SUN T, FANG J J, et al. Production test of blue carboon as fuel instead of pulverized coke in sintering process[J]. Henan Metallurgy, 2012,20(4):6-8,16. (付林林, 孙涛, 方俊杰, 等. 烧结过程用兰炭作为燃料替代焦粉的生产试验[J]. 河南冶金, 2012,20(4):6-8,16.

    FU L L, SUN T, FANG J J, et al. Production test of blue carboon as fuel instead of pulverized coke in sintering process[J]. Henan Metallurgy, 2012, 20(4): 6-8,16.
    [6]
    WANG X, ZHANG H Y, ZHAO J W, et al. Discussion on adding semi-coke to replace part of coke powder on all fine powder sintering process[J]. Xinjiang Iron and Steel, 2017(3):36-39. (王星, 张海燕, 赵金巍, 等. 全精粉烧结配加兰炭替代部分焦粉的探讨[J]. 新疆钢铁, 2017(3):36-39.

    WANG X, ZHANG H Y, ZHAO J W, et al. Discussion on adding semi-coke to replace part of coke powder on all fine powder sintering process[J]. Xinjiang Iron and Steel, 2017(3): 36-39.
    [7]
    LI S, ZHU Z Z, XU J, et al. Optimization and modification of semi-coke blending for conventional coke-making[J]. Iron and Steel, 2012,47(8):17-21. (李硕, 朱子宗, 徐军. 兰炭改性及配煤炼焦优化[J]. 钢铁, 2012,47(8):17-21.

    LI S, ZHU Z Z, XU J, et al. Optimization and modification of semi-coke blending for conventional coke-making[J]. Iron and Steel, 2012, 47(8): 17-21.
    [8]
    YANG S P, GUO S Q, ZHANG P H, et al. Influence of semi-coke used as sintering fuel on metallurgical properties of sinter[J]. Iron & Steel, 2016,51(9):6-11. (杨双平, 郭拴全, 张攀辉, 等. 兰炭作烧结燃料对烧结矿冶金性能的影响[J]. 钢铁, 2016,51(9):6-11.

    YANG S P, GUO S Q, ZHANG P H, et al. Influence of semi-coke used as sintering fuel on metallurgical properties of sinter[J]. Iron & Steel, 2016, 51(9): 6-11.
    [9]
    QIN L B, QIN W L, CHEN W S, et al. Experimental research on application of semi-coke instead of breeze in iron ore sintering[J]. Sintering and Pelletizing, 2023,48(4):95-102. (秦林波, 秦万里, 陈旺生, 等. 兰炭替代焦粉应用于铁矿烧结的试验研究[J]. 烧结球团, 2023,48(4):95-102.

    QIN L B, QIN W L, CHEN W S, et al. Experimental research on application of semi-coke instead of breeze in iron ore sintering[J]. Sintering and Pelletizing, 2023, 48(4): 95-102.
    [10]
    WANG H X, WU X X, WEI H N, et al. Research on property of semi-coke and its application in blast furnace injection technology [J]. Fuel & Chemical Processes 2024, 55 (2): 1-6. (王和喜, 吴枭雄, 魏会宁, 等. 兰炭特性及在高炉的应用研究进展[J]. 燃料与化工, 2024, 55 (2): 1-6.

    WANG H X, WU X X, WEI H N, et al. Research on property of semi-coke and its application in blast furnace injection technology [J]. Fuel & Chemical Processes 2024, 55 (2): 1-6.
    [11]
    HUANG J X, ZHAO Q E, LIU Y D, et al. A method for smelting Ti-bearing blast furnace slag with composite reducing agent[P]. China, CN202211141504.6, 2023.12. 15. (黄家旭, 赵青娥, 刘亚东, 等. 一种复合还原剂冶炼含钛高炉渣的方法[P]. 中国, CN202211141504.6, 2023.12. 15.

    HUANG J X, ZHAO Q E, LIU Y D, et al. A method for smelting Ti-bearing blast furnace slag with composite reducing agent[P]. China, CN202211141504.6, 2023.12. 15.
    [12]
    QIU S X, ZHANG S F, ZHOU X H, et al. Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis[J]. Renewable Energy, 136 (2019): 308 - 316.
    [13]
    SHI Y, FAN Q M, LIU Z B, et al. Study on optimization method for calulation of graphitization degree of calcined petroleum coke[J]. Petroleum Processing ang Petrochemicals, 2022,53(4):89-94. (施洋, 范启明, 刘自宾, 等. 煅后石油焦石墨化度计算的修正方法研究[J]. 石油炼制与化工, 2022,53(4):89-94.

    SHI Y, FAN Q M, LIU Z B, et al. Study on optimization method for calulation of graphitization degree of calcined petroleum coke[J]. Petroleum Processing ang Petrochemicals, 2022, 53(4): 89-94.
    [14]
    ZHANG Y, DENG H J, LI M, et al. The evaluation of graphitization degree P1 M odeland M easurement of C/C composites[J]. Journal of Meterials Engineering, 2001(4):29-33. (张赟, 邓海金, 李明, 等. C/C复合材料石墨化度P1模型的表征及测定[J]. 材料工程, 2001(4):29-33. doi: 10.3969/j.issn.1001-4381.2001.04.008

    ZHANG Y, DENG H J, LI M, et al. The evaluation of graphitization degree P1 M odeland M easurement of C/C composites[J]. Journal of Meterials Engineering, 2001(4): 29-33. doi: 10.3969/j.issn.1001-4381.2001.04.008
    [15]
    XU J L, YAN W, WU D J. Measuring the graphitization and crystallinity of carbon material by XRD peak separation method[J]. Journal of Wuhan University of Science and Technology, 2009,32(5):522-525. (许聚良, 鄢文, 吴大军. XRD分峰拟合法测定炭材料的石墨化度和结晶度[J]. 武汉科技大学学报, 2009,32(5):522-525.

    XU J L, YAN W, WU D J. Measuring the graphitization and crystallinity of carbon material by XRD peak separation method[J]. Journal of Wuhan University of Science and Technology, 2009, 32(5): 522-525.
    [16]
    DANG X E, TAGN C, LÜ J, et al. Exploratory study on graphitization of semi-coke powder[J]. Chinese Journal of Environmental Engineering, 2016,10(3):1438-1444. (党晓娥, 唐晨, 吕军, 等. 兰炭焦粉的石墨化探索性研究[J]. 环境工程学报, 2016,10(3):1438-1444.

    DANG X E, TAGN C, LÜ J, et al. Exploratory study on graphitization of semi-coke powder[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1438-1444.
    [17]
    REN S S, WANG H, YANG S. Research progress in ruducing agents for producing industrial grade silicon[J]. Contemporary Chemical Industry, 2014,43(12):2627-2629, 2631. (任思帅, 王辉, 杨帅. 工业硅生产过程中还原剂研究进展[J]. 当代化工, 2014,43(12):2627-2629, 2631. doi: 10.3969/j.issn.1671-0460.2014.12.046

    REN S S, WANG H, YANG S. Research progress in ruducing agents for producing industrial grade silicon[J]. Contemporary Chemical Industry, 2014, 43(12): 2627-2629, 2631. doi: 10.3969/j.issn.1671-0460.2014.12.046
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.5 %FULLTEXT: 18.5 %META: 70.4 %META: 70.4 %PDF: 11.1 %PDF: 11.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(9)

    Article Metrics

    Article views (18) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return