YU Bin, YE Mingfeng, WANG Ning, HUANG Yun, GAO Leizhang, YIN Danfeng, CHEN Haijun. Impurities composition prediction and control of FeV50 alloy by aluminothermal reduction[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 25-31. doi: 10.7513/j.issn.1004-7638.2025.03.005
Citation: YU Bin, YE Mingfeng, WANG Ning, HUANG Yun, GAO Leizhang, YIN Danfeng, CHEN Haijun. Impurities composition prediction and control of FeV50 alloy by aluminothermal reduction[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 25-31. doi: 10.7513/j.issn.1004-7638.2025.03.005

Impurities composition prediction and control of FeV50 alloy by aluminothermal reduction

doi: 10.7513/j.issn.1004-7638.2025.03.005
  • Received Date: 2024-07-08
  • Publish Date: 2025-06-30
  • The thermodynamic behavior of typical impurity elements in the preparation process of FeV50 alloy by aluminum thermal reduction and their stable occurrence state in the alloy were analyzed, and the distribution law of impurity elements under specific slag characteristics conditions was investigated.The control standards for impurity elements were established. The results indicate that the migration and occurrence of typical impurity elements in aluminum thermal reduction system are related to the smelting stage and slag characteristics. During the aluminum thermal reduction process, weak reducing impurity elements such as Fe, Mn, Si, C, P, S, etc. have the thermodynamic feasibility to be reduced by metallic aluminum and entering the alloy phase. The reduced Fe, Mn, and Si exist in elemental form, while C, P, and S may react with the alloy matrix elements V and Fe to form VC, Fe3P, and FeS, respectively. After the aluminothermal reaction, non-metallic impurities in the alloy gradually diffuse into the slag, and their diffusion ability is mainly determined by the characteristics of the slag. Under specific slag composition conditions dominated by vanadium oxide reduction, the average distribution coefficients of Si, Mn, C, P and S in the alloy are 76.9%, 89.7%, 255.0%, 87.6% and 28.7%, and the corresponding upper limits of impurity control for unit raw materials that meet the FeV50-A standard requirements are 4.0%, 1.0%, 0.6%, 0.13%, and 0.12%, respectively.
  • [1]
    HUANG D X. Vanadium recovery steelmaking[M]. Beijing: Metallurgical Industry Press, 2000: 16-17 (黄道鑫. 提钒炼钢[M]. 北京: 冶金工业出版社, 2000: 16-17.

    HUANG D X. Vanadium recovery steelmaking[M]. Beijing: Metallurgical Industry Press, 2000: 16-17
    [2]
    YANG C F, ZHANG Y Q, WANG R Z. Metallurgical principles and applications of vanadium steel[M]. Beijing: Metallurgical Industry Press, 2012: 20-25. (杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用[M]. 北京: 冶金工业出版社, 2012: 20-25.

    YANG C F, ZHANG Y Q, WANG R Z. Metallurgical principles and applications of vanadium steel[M]. Beijing: Metallurgical Industry Press, 2012: 20-25.
    [3]
    YU B, SUN Z H, ZHOU H, et al. Theoretical application and factors influencing casting settlement of FeV50 alloy[J]. Chinese Journal of Engineering, 2017,39(12):1822-1827. (余彬, 孙朝晖, 周恒, 等. FeV50合金浇铸沉降理论的应用及其影响因素[J]. 工程科学学报, 2017,39(12):1822-1827.

    YU B, SUN Z H, ZHOU H, et al. Theoretical application and factors influencing casting settlement of FeV50 alloy[J]. Chinese Journal of Engineering, 2017, 39(12): 1822-1827.
    [4]
    ZHU S Y. Technical research on smelting high ferrovanadium by electroaluminothermal method[J]. Iron Steel Vanadium Titanium, 1993,14(1):37-39. (朱胜友. 电铝热法冶炼高钒铁的技术研究[J]. 钢铁钒钛, 1993,14(1):37-39.

    ZHU S Y. Technical research on smelting high ferrovanadium by electroaluminothermal method[J]. Iron Steel Vanadium Titanium, 1993, 14(1): 37-39.
    [5]
    YU B, YUAN T C, SHI J J, et al. Preparation of high-quality FeV50 alloy by an improved SHS-EAH multi-stage process[J]. Ceramics International, 2023,49(10):15114-15121. doi: 10.1016/j.ceramint.2023.01.094
    [6]
    XIAN Y. Effects of Al content on phase transformation in FeV50 alloy and its mechanism[J]. Iron Steel Vanadium Titanium, 2012,33(5):14-18. (鲜勇. Al含量对FeV50合金相变的影响及机理研究[J]. 钢铁钒钛, 2012,33(5):14-18.

    XIAN Y. Effects of Al content on phase transformation in FeV50 alloy and its mechanism[J]. Iron Steel Vanadium Titanium, 2012, 33(5): 14-18.
    [7]
    XIAN Y, ZHENG H X, ZHAI Q J, et al. A two-dimensional structure map for prediction of the transition-metal laves phases[J]. Computational Materials Science, 2016,125:1-7. doi: 10.1016/j.commatsci.2016.08.023
    [8]
    YE M F, YU B, HUANG Y, et al. Trend and control of P in FeV50 smelting process of large-scale tilting furnace[J]. Iron Steel Vanadium Titanium, 2022,43(4):36-41. (叶明峰, 余彬, 黄云, 等. P元素在倾翻炉FeV50冶炼中的走向与控制[J]. 钢铁钒钛, 2022,43(4):36-41. doi: 10.7513/j.issn.1004-7638.2022.04.006

    YE M F, YU B, HUANG Y, et al. Trend and control of P in FeV50 smelting process of large-scale tilting furnace[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 36-41. doi: 10.7513/j.issn.1004-7638.2022.04.006
    [9]
    TANG Z X, ZHANG S C, HU J L. Aluminum and oxygen equilibrium relation and deep desulfurization in smelting cast steel[J]. Foundry Equipment and Technology, 2014,6:44-45. (唐钟雪, 张生存, 胡进林. 铸钢冶炼过程中的Al、O平衡关系及深度脱S处理[J]. 铸造设备与工艺, 2014,6:44-45.

    TANG Z X, ZHANG S C, HU J L. Aluminum and oxygen equilibrium relation and deep desulfurization in smelting cast steel[J]. Foundry Equipment and Technology, 2014, 6: 44-45.
    [10]
    YU B, SUN Z H, PAN C, et al. Study on carbon content control for FeV80 alloy[J]. Iron Steel Vanadium Titanium, 2017,38(5):37-41. (余彬, 孙朝晖, 潘成, 等. FeV80合金碳含量控制研究[J]. 钢铁钒钛, 2017,38(5):37-41.

    YU B, SUN Z H, PAN C, et al. Study on carbon content control for FeV80 alloy[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 37-41.
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 63.0 %META: 63.0 %PDF: 22.2 %PDF: 22.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (16) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return