Citation: | XU Can, TIAN Donghua, WANG Hongli, WU Chengchuan, ZHENG Huaibei, LU Yonghao. Fatigue life prediction of Aermet100 steel in the atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 190-197. doi: 10.7513/j.issn.1004-7638.2025.02.026 |
[1] |
WANG X P. Ultra high strength steel 23Co14Ni12Cr3MoE (A100) large forgings for aircraft landing gear[R]. Engineering Technology, 2020-11-27. (王小萍.飞机起落架用超高强度钢23Co14Ni12Cr3MoE(A100)大型锻材[R]. 工程科技, 2020-11-27.
WANG X P. Ultra high strength steel 23Co14Ni12Cr3MoE (A100) large forgings for aircraft landing gear[R]. Engineering Technology, 2020-11-27.
|
[2] |
WANG X H, LUO H W. Research and application progress of ultra high strength stainless steel for aircraft landing gear[J]. Material Engineering, 2019,47(9):1-12. (王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019,47(9):1-12. doi: 10.11868/j.issn.1001-4381.2019.000122
WANG X H, LUO H W. Research and application progress of ultra high strength stainless steel for aircraft landing gear[J]. Material Engineering, 2019, 47(9): 1-12. doi: 10.11868/j.issn.1001-4381.2019.000122
|
[3] |
SUN Y K, ZHANG W. Development and research status of civil aircraft landing gear materials[J]. Hot Working Process, 2018, 47(20): 22-24, 29. (孙艳坤, 张威. 民机起落架用材料的发展与研究现状[J]. 热加工工艺, 2018, 47(20): 22-24, 29.
SUN Y K, ZHANG W. Development and research status of civil aircraft landing gear materials[J]. Hot Working Process, 2018, 47(20): 22-24, 29.
|
[4] |
HE Y Y, ZHAO Y. Study on quality control of heat treatment mechanical properties of A-100 steel for landing gear[J]. New Technology and Process, 2016(6):7982. (贺亚勇, 赵勇. 起落架用A-100钢热处理力学性能质量控制研究[J]. 新技术新工艺, 2016(6):7982.
HE Y Y, ZHAO Y. Study on quality control of heat treatment mechanical properties of A-100 steel for landing gear[J]. New Technology and Process, 2016(6): 7982.
|
[5] |
China academy of aeronautical science and technology. Reliability analysis and design guide for aircraft structures[M]. Xi’an : Northwestern Polytechnical University Press, 1995. (中国航空科学技术研究院. 飞机结构可靠性分析与设计指南[M]. 西安: 西北工业大学出版社, 1995.
China academy of aeronautical science and technology. Reliability analysis and design guide for aircraft structures[M]. Xi’an : Northwestern Polytechnical University Press, 1995.
|
[6] |
PENG W W, ZENG W D, YAN W Q, et al. Effect of tempering process on microstructure and toughness of aermet100 ultra-high strength steel[J]. Journal of Material Heat Treatment, 2013,34(6):58-61. (彭雯雯, 曾卫东, 闫文巧, 等. 回火工艺对Aermet100超高强度钢组织与韧性的影响[J]. 材料热处理学报, 2013,34(6):58-61.
PENG W W, ZENG W D, YAN W Q, et al. Effect of tempering process on microstructure and toughness of aermet100 ultra-high strength steel[J]. Journal of Material Heat Treatment, 2013, 34(6): 58-61.
|
[7] |
LI Z, GU L X, LI H Q, et al. Research progress of 23Co14Ni12Cr3MoE (A-100) Steel[J]. Journal of Aeronautical Materials, 2017,37(6):16-24. (李志, 古立新, 李惠曲, 等. 23Co14Ni12Cr3MoE(A-100)钢的研究进展[J]. 航空材料学报, 2017,37(6):16-24. doi: 10.11868/j.issn.1005-5053.2017.001006
LI Z, GU L X, LI H Q, et al. Research progress of 23Co14Ni12Cr3MoE (A-100) Steel[J]. Journal of Aeronautical Materials, 2017, 37(6): 16-24. doi: 10.11868/j.issn.1005-5053.2017.001006
|
[8] |
LI J, GU L X, LI ZHI, et al. Study on tempering temperature sensitivity of mechanical properties of aerMet100 steel[J]. Heat Treatment of Metals, 2010,35(3):33-36. (李杰, 古立新, 李志, 等. AerMet100钢力学性能的回火温度敏感性研究[J]. 金属热处理, 2010,35(3):33-36.
LI J, GU L X, LI ZHI, et al. Study on tempering temperature sensitivity of mechanical properties of aerMet100 steel[J]. Heat Treatment of Metals, 2010, 35(3): 33-36.
|
[9] |
WANG X. Study on hot deformation behavior and thermomechanical treatment process of aermet100 steel[D]. Nanchang: Nanchang Hangkong University, 2016. (王鑫. AerMet100钢热变形行为及形变热处理工艺研究[D]. 南昌: 南昌航空大学, 2016.
WANG X. Study on hot deformation behavior and thermomechanical treatment process of aermet100 steel[D]. Nanchang: Nanchang Hangkong University, 2016.
|
[10] |
WANG X R. AerMet100 – ultra high strength steel with excellent comprehensive properties[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996(6):5-10. (王晓茹. AerMet100-极好综合性能的超高强度钢[J]. 北京航空航天大学学报, 1996(6):5-10.
WANG X R. AerMet100 – ultra high strength steel with excellent comprehensive properties[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996(6): 5-10.
|
[11] |
LI J, LI Z, YAN M G. Development of high alloy ultra-high strength steel[J]. Material Engineering, 2007(4):61-65. (李杰, 李志, 颜鸣皋. 高合金超高强度钢的发展[J]. 材料工程, 2007(4):61-65. doi: 10.3969/j.issn.1001-4381.2007.04.016
LI J, LI Z, YAN M G. Development of high alloy ultra-high strength steel[J]. Material Engineering, 2007(4): 61-65. doi: 10.3969/j.issn.1001-4381.2007.04.016
|
[12] |
LIU Z B, LIANG J X, SU J, et al. Research and development status of high strength stainless steel[J]. Journal of Metals, 2020,56(4):549-557. (刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020,56(4):549-557.
LIU Z B, LIANG J X, SU J, et al. Research and development status of high strength stainless steel[J]. Journal of Metals, 2020, 56(4): 549-557.
|
[13] |
WANG H L, ZHANG J, ZHU J C, et al. Structures of m2c carbides and its influence on strengthening in aermet100 steel at the typical tempering temperature 482 °C[J]. Vacuum, 2023, 21.
|
[14] |
WANG H L, ZHANG J, ZHU J C, et al. The evolution of a microstructure during tempering and its influence on the mechanical properties of aermet100 steel[J]. Materials, 2023, 16, 6907.
|
[15] |
HU S S, SHI L L, H Kun, et al. Effect of tempering holding time on mechanical properties and microstructure of a100 steel[J]. Metal Thermal, 2021,46(2):140-143. (胡生双, 史利利, 何坤, 等. 回火保温时间对A-100钢力学性能和组织的影响[J]. 金属热处理, 2021,46(2):140-143.
HU S S, SHI L L, H Kun, et al. Effect of tempering holding time on mechanical properties and microstructure of a100 steel[J]. Metal Thermal, 2021, 46(2): 140-143.
|
[16] |
YE W B. Development of A100 secondary hardening ultra-high strength alloy[J]. Special Steel Technology, 2014, 20 (1): 1416, 26. (叶文冰. A100二次硬化型超高强度合金研制[J]. 特钢技术, 2014, 20(1): 1416, 26.
YE W B. Development of A100 secondary hardening ultra-high strength alloy[J]. Special Steel Technology, 2014, 20 (1): 1416, 26.
|
[17] |
YANG X H, ZHANG S H, WANG Z T, et al. Hot deformation behavior of aermet100 ultra-high strength steel[J]. Journal of Plastic Engineering, 2007(6):121-126. (杨小红, 张士宏, 王忠堂, 等. AerMet100超高强度钢热变形行为[J]. 塑性工程学报, 2007(6):121-126. doi: 10.3969/j.issn.1007-2012.2007.06.027
YANG X H, ZHANG S H, WANG Z T, et al. Hot deformation behavior of aermet100 ultra-high strength steel[J]. Journal of Plastic Engineering, 2007(6): 121-126. doi: 10.3969/j.issn.1007-2012.2007.06.027
|
[18] |
STRIZAK J P, TIAN H, LIAW P K, et al. Fatigue properties of type 316LN stainless steel in air and mercury[J]. Journal of Nuclear Materials, 2005,343(1-3):134144.
|
[19] |
MICHLER T, NAUMANN J, WIEBESIEK J, et al. Influence of frequency and waveform on S-N fatigue of commercial austenitic stainless steels with different nickel contents in inert gas and in high pressure gaseous hydrogen[J]. International Journal of Fatigue, 2016,96:67-77.
|
[20] |
SU H Y, LIU R D, LU Y P, et al. The shape and size of the tensile-compression high cycle fatigue specimen of automobile sheet are selected [J]. Physicochemical Test : physical volume, 2021, 57 (10) : 27-31. (苏洪英, 刘仁东, 芦延鹏, 等. 汽车薄板拉-压高周疲劳试样的形状和尺寸选取[J]. 理化检验: 物理分册, 2021, 57(10): 27-31.
SU H Y, LIU R D, LU Y P, et al. The shape and size of the tensile-compression high cycle fatigue specimen of automobile sheet are selected [J]. Physicochemical Test : physical volume, 2021, 57 (10) : 27-31.
|