Citation: | WANG Yijia, LI Binzhou, DUAN Tao, ZHANG Dayue, SUN Ruiqi, LIU Baoquan. Research on additive repair special powder and process of 921 steel for marine equipment[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 169-174, 181. doi: 10.7513/j.issn.1004-7638.2025.02.023 |
[1] |
KOU R K. Study on high pressure dry underwater laser cladding repair technology and properties of 921A ship steel[D]. Beijing: Beijing Institute of Petrochemical Technology, 2022. (寇荣魁. 921A舰船钢高压干法水下激光熔覆修复工艺及性能研究[D]. 北京:北京石油化工学院, 2022.
KOU R K. Study on high pressure dry underwater laser cladding repair technology and properties of 921A ship steel[D]. Beijing: Beijing Institute of Petrochemical Technology, 2022.
|
[2] |
FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materilas China, 2014,33(7):385-393. (方志刚, 刘斌, 李国明, 等. 舰船装备材料体系发展与需求分析[J]. 中国材料进展, 2014,33(7):385-393.
FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materilas China, 2014, 33(7): 385-393.
|
[3] |
HART P, RICHARDSON I M, NIXON J H. The effects of pressure on electrical performance and weld bead geometry in high pressure GMA welding[J]. Welding in the World, 2001, 45: 25-33.
|
[4] |
ZHU D F, ZHU J L, JIAO X D, et al. Microstructure and mechanical properties of 921A steel welding joint by laser-MAG hybrid welding[J]. Welding & Joining, 2022(9): 25-29, 42. (朱东芳, 朱加雷, 焦向东, 等. 921A钢激光-MAG复合焊接头组织及性能[J]. 焊接, 2022(9): 25-29, 42.
ZHU D F, ZHU J L, JIAO X D, et al. Microstructure and mechanical properties of 921A steel welding joint by laser-MAG hybrid welding[J]. Welding & Joining, 2022(9): 25-29, 42.
|
[5] |
GARASIC I, KRALJ S, KOZUH Z, et al. Analysis of underwater repair technology on the jack-up platform spud can[J]. Brodogradnja, 2010, 61(2): 153-160.
|
[6] |
WOODWARD N, KNAGENHELM H O, BERGE J O, et al. Hyperbaric GMA welding for contingency repair using a fillet welded sleeve at 1 000 m water depth[C]. Proceedings of the International Offshore and Polar Engineering Conference, 2007:3403.
|
[7] |
KARATZAS V A, KOTSIDIS E A, TSOUVALIS N G, et al. Experimental fatigue study of composite patch repaired steel plates with cracks[J]. Applied composite materials, 2015, 22(5): 507-523.
|
[8] |
HAN L G, WU X M, CHEN G D, et al. Local dry underwater welding of 304 stainless steel based on a microdrain cover[J]. Journal of Materials Processing Technology, 2019,268:47-53. doi: 10.1016/j.jmatprotec.2018.12.029
|
[9] |
SHAO C L, XIAO J L, ZHU J L, et al. Research on surface repair technology of laser wire-filled cladding and verification on pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021,29(4):14-18. (邵长磊, 肖镌璐, 朱加雷, 等. 激光填丝熔覆表面修复工艺研究及压力环境验证[J]. 北京石油化工学院学报, 2021,29(4):14-18.
SHAO C L, XIAO J L, ZHU J L, et al. Research on surface repair technology of laser wire-filled cladding and verification on pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(4): 14-18.
|
[10] |
SUN G, WANG Z, LU Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022(1): 35.
|
[11] |
MAKIHARA Y, MIWA Y, HIROSE N, et al. The application of the welding technique at fillet groove by the YAG-laser repair-welding robot for underwater environment[C]. 12th International Conference on Nuclear Engineering, 2004, 2, 149-155.
|
[12] |
SRIDAR S, ZHAO Y, LI K, et al. Post-heat treatment design for high-strength low-alloy steels processed by laser powder bed fusion[J]. Materials Science & Engineering, A. 2020,788: 139531.
|
[13] |
RODRIGUES T A, DUARTE V R, TOMÁS D, et al. In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM)[J]. Additive Manufacturing, 2020, 34: 101200.
|