Citation: | LIU Lan, CAO Zhiqin, HE Kui, SUN Xinpo, LIAO Yinghua, YANG Xing, TANG Wenjing, LI Yuting, ZHENG Taobin. Preparation and performance of alkali-activated high-titanium heavy slag cementitious materials[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 97-102. doi: 10.7513/j.issn.1004-7638.2025.02.014 |
[1] |
HU Y, YIN S, LI K, et al. Comprehensive utilization of solid waste resources: Development of wet shotcrete for mines[J]. International Journal of Minerals, Metallurgy and Materials, 2023,30(9):1692-1704. doi: 10.1007/s12613-022-2563-8
|
[2] |
ZAI X. Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. Comprehensive utilization of resources in China, 2019, 39(1): 4. (再协. 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用, 2021, 39(01): 4.
ZAI X. Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. Comprehensive utilization of resources in China, 2019, 39(1): 4.
|
[3] |
HE K, DENG Y, CAO Z, et al. Engineering performance and microscale structure of activated high titanium slag-soil-cement-bentonite (HTS-SCB) slurry backfill[J]. Construction and Building Materials, 2023,373:130776. doi: 10.1016/j.conbuildmat.2023.130776
|
[4] |
WANG H B, SUN Q Z, ZHANG X F , et al. Effect of trisodium phosphate on the preparation of microcrystalline foam glass from high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. ) (王海波, 孙青竹, 张雪峰, 等. 磷酸三钠对高钛高炉渣制备微晶泡沫玻璃的影响[J]. 钢铁钒钛, 2021, 42(4): 57-61.
WANG H B, SUN Q Z, ZHANG X F , et al. Effect of trisodium phosphate on the preparation of microcrystalline foam glass from high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. )
|
[5] |
YANG T Y, SHU B A, QIU W J, et al. Internal curing aggregate, shrinkage reducer and expansion agent cooperate to improve the volume stability of UHPC materials[J]. Concrete, 2023(12):120-125. (杨腾宇, 舒本安, 邱文俊, 等. 内养护集料、减缩剂与膨胀剂协同提升UHPC材料体积稳定性[J]. 混凝土, 2023(12):120-125. doi: 10.3969/j.issn.1002-3550.2023.12.024
YANG T Y, SHU B A, QIU W J, et al. Internal curing aggregate, shrinkage reducer and expansion agent cooperate to improve the volume stability of UHPC materials[J]. Concrete, 2023(12): 120-125. doi: 10.3969/j.issn.1002-3550.2023.12.024
|
[6] |
TANG L Y, LI C H, LI W X, et al. Comprehensive utilization of solid waste resources in the cement industry in Sichuan Province and its impact on carbon emissions[J]. Sichuan Building Materials, 2024, 50 (4): 11-12+53 (唐丽英, 李春洪, 李文旭, 等. 四川省水泥行业固废资源综合利用情况及其对碳排放的影响[J]. 四川建材, 2024, 50 (4)
TANG L Y, LI C H, LI W X, et al. Comprehensive utilization of solid waste resources in the cement industry in Sichuan Province and its impact on carbon emissions[J]. Sichuan Building Materials, 2024, 50 (4): 11-12+53
|
[7] |
LI J, CHEN D B, YU Q J, et al. The reaction process of slag in different concentrations of sodium hydroxide solution[J]. Journal of the Chinese Ceramic Society, 2024, 52 (5): 1508-1519. (李静, 陈东彬, 余其俊, 等. 矿渣在不同浓度氢氧化钠溶液中的反应过程[J]. 硅酸盐学报, 2024, 52 (5): 1508-1519 .
LI J, CHEN D B, YU Q J, et al. The reaction process of slag in different concentrations of sodium hydroxide solution[J]. Journal of the Chinese Ceramic Society, 2024, 52 (5): 1508-1519.
|
[8] |
ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology, 2024,56(1):165-172. (张少峰, 牛荻涛, 罗大明, 等. 激发剂对钢渣水泥的活化及作用机理[J]. 哈尔滨工业大学学报, 2024,56(1):165-172.
ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 165-172.
|
[9] |
YANG H, CHEN W, MA S S, et al. Experimental study on the mechanical properties of high-titanium heavy slag tunnel shotcrete concrete[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118-122. (杨贺, 陈伟, 马双狮, 等. 高钛重矿渣隧道喷射混凝土力学性能试验研究[J]. 钢铁钒钛, 2023, 44(3): 118-122.
YANG H, CHEN W, MA S S, et al. Experimental study on the mechanical properties of high-titanium heavy slag tunnel shotcrete concrete[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118-122.
|
[10] |
LIANG H Z, CHEN W, YANG H. Experimental study on the durability of high-titanium heavy slag concrete under salt-frost action[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 100-106. (梁贺之, 陈伟, 杨贺. 盐冻作用下高钛重矿渣混凝土耐久性试验研究[J]. 钢铁钒钛, 2022, 43(4): 100-106.
LIANG H Z, CHEN W, YANG H. Experimental study on the durability of high-titanium heavy slag concrete under salt-frost action[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 100-106.
|
[11] |
CHEN J X, LI H F, CHEN H B, et al. Study on ultra-high-strength concrete with addition of ultrafine limestone powder and titanium slag powder[J]. Journal of Building Materials, 2005, (6): 672-676. (陈剑雄, 李鸿芳, 陈寒斌, 等. 掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J]. 建筑材料学报, 2005, (6): 672-676.
CHEN J X, LI H F, CHEN H B, et al. Study on ultra-high-strength concrete with addition of ultrafine limestone powder and titanium slag powder[J]. Journal of Building Materials, 2005, (6): 672-676.
|
[12] |
OBENAUS R, FALAH M, ILLIKAINEN M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications[J]. Construction and Building Materials, 2020,246:118470. doi: 10.1016/j.conbuildmat.2020.118470
|
[13] |
CHI M, HUANG R. Effects of dosage and modulus ratio of alkali-activated solution on the properties of slag mortars[J]. Advanced Science Letters, 2012,16(1):7-12. doi: 10.1166/asl.2012.3313
|
[14] |
CHEN T A, CHEN J H, HUANG J S. Effects of activator and aging process on the compressive strengths of alkali-activated glass inorganic binders[J]. Cement and Concrete Composites, 2017,76:1-12. doi: 10.1016/j.cemconcomp.2016.11.011
|
[15] |
PROVIS J L. Alkali-activated materials[J]. Cement and concrete research, 2018,114:40-48. doi: 10.1016/j.cemconres.2017.02.009
|
[16] |
WANG S D, SCRIVENER K L. Hydration products of alkali activated slag cement[J]. Cement and Concrete research, 1995,25(3):561-571. doi: 10.1016/0008-8846(95)00045-E
|