Citation: | WANG Wenxi, HOU Fuxing, WANG Jianyun, YANG Zheng, WANG Dan, CHENG Jia. Effect of Aspergillus niger on the corrosion of industrially pure titanium[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 46-52. doi: 10.7513/j.issn.1004-7638.2025.02.007 |
[1] |
SUN J, QI Y J, LIU H, et al. Research progress on tribo-corrosion of titanium and titanium alloys in seawater environment[J]. Materials Protection, 2020,53(1):151-156. (孙静, 齐元甲, 刘辉, 等. 海洋环境下钛及钛合金的腐蚀磨损研究进展[J]. 材料保护, 2020,53(1):151-156.
SUN J, QI Y J, LIU H, et al. Research progress on tribo-corrosion of titanium and titanium alloys in seawater environment[J]. Materials Protection, 2020, 53(1): 151-156.
|
[2] |
DONG Y C, FANG Z G, CHANG H, et al. Service performance of titanium alloy in marine environment[J]. Materials China, 2020,39(3):185-190. (董月成, 方志刚, 常辉, 等. 海洋环境下钛合金主要服役性能研究[J]. 中国材料进展, 2020,39(3):185-190. doi: 10.7502/j.issn.1674-3962.201909015
DONG Y C, FANG Z G, CHANG H, et al. Service performance of titanium alloy in marine environment[J]. Materials China, 2020, 39(3): 185-190. doi: 10.7502/j.issn.1674-3962.201909015
|
[3] |
LI J Q, ZHANG D Y, CHEN X B, et al. Laser directed energy deposited, ultrafine-grained functional titanium-copper alloys tailored for marine environments: Antibacterial and anti-microbial corrosion studies[J]. Journal of Materials Science & Technology, 2023,166:21-33.
|
[4] |
JIANG C M, YANG S X, GUO D, et al. Simulated microgravity accelerates alloy corrosion by aspergillus sp. via the enhanced production of organic acids[J]. Applied and Environmental Microbiology, 2022,88(19):1-16.
|
[5] |
DENG C, ZHAO Z X, HU H S, et al. Comparisons of I− and Cl− concentrations on the corrosion behavior of TA4 titanium alloy in azeotropic acetic acid solutions[J]. Journal of Physics: Conference Series, 2022,2368(1):012009. doi: 10.1088/1742-6596/2368/1/012009
|
[6] |
SAN N O, NAZIR H, DÖNMEZ G. Evaluation of microbiologically influenced corrosion inhibition on Ni-Co alloy coatings by aeromonas salmonicida and clavibacter michiganensis[J]. Corrosion Science, 2012,65:113-118. doi: 10.1016/j.corsci.2012.08.009
|
[7] |
ZHANG D, WU J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment[J]. Oceanologia et Limnologia Sinica, 2020,51(4):821-828. (张盾, 吴佳佳. 海洋环境微生物腐蚀机理研究进展[J]. 海洋与湖沼, 2020,51(4):821-828. doi: 10.11693/hyhz20200300061
ZHANG D, WU J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 821-828. doi: 10.11693/hyhz20200300061
|
[8] |
VICTORIA S N, SHARMA A, MANIVANNAN R. Metal corrosion induced by microbial activity-Mechanism and control options[J]. Journal of the Indian Chemical Society, 2021,98(6):100083. doi: 10.1016/j.jics.2021.100083
|
[9] |
JIA R, YANG D Q, XU D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm[J]. Bioelectrochemistry, 2017,118:38-46. doi: 10.1016/j.bioelechem.2017.06.013
|
[10] |
LI Z D, BI Z Y. Effects of environmental conditions such as temperature, salinity and pH on mold growth[J]. Asian Journal of Clinical Medicine, 2019,2(4):33-38. (李卓地, 毕振云. 温度、盐度及pH等环境条件对霉菌生长的影响[J]. 亚洲临床医学杂志, 2019,2(4):33-38.
LI Z D, BI Z Y. Effects of environmental conditions such as temperature, salinity and pH on mold growth[J]. Asian Journal of Clinical Medicine, 2019, 2(4): 33-38.
|
[11] |
LIU S D, KONG W X, WANG J. Investigation of typical marine mould corrosion environment-A case study of “Dong Fang Hong 2”[J]. Guangzhou Chemical Industry, 2016,44(21):141-143. (刘士栋, 孔维轩, 王佳. 典型海洋霉菌腐蚀环境调查-以“东方红2”为例[J]. 广州化工, 2016,44(21):141-143. doi: 10.3969/j.issn.1001-9677.2016.21.050
LIU S D, KONG W X, WANG J. Investigation of typical marine mould corrosion environment-A case study of “Dong Fang Hong 2”[J]. Guangzhou Chemical Industry, 2016, 44(21): 141-143. doi: 10.3969/j.issn.1001-9677.2016.21.050
|
[12] |
KHAN M S, LI Z, YANG K, et al. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa[J]. Journal of Materials Science & Technology, 2019,35(1):216-222.
|
[13] |
ZHANG Y X, CHEN C Y, LIU H W, et al. Research progress on mildew induced corrosion of Al-alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2021,41(1):13-21. (张雨轩, 陈翠颖, 刘宏伟, 等. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021,41(1):13-21.
ZHANG Y X, CHEN C Y, LIU H W, et al. Research progress on mildew induced corrosion of Al-alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(1): 13-21.
|
[14] |
TIAN F, BAI X Q, HE X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018,47(8):182-196. (田丰, 白秀琴, 贺小燕, 等. 海洋环境下金属材料微生物腐蚀研究进展[J]. 表面技术, 2018,47(8):182-196.
TIAN F, BAI X Q, HE X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018, 47(8): 182-196.
|
[15] |
CHEN J N. The study on microbiologically influenced corrosion behavior and mechanism of hull structure material 907 steel in seawater[D]. Qingdao: University of Chinese Academy of Science (Institute of Oceanology, Chinese Academy of Sciences), 2019. (陈菊娜. 船体结构材料907钢在海水中微生物腐蚀行为及机理研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.
CHEN J N. The study on microbiologically influenced corrosion behavior and mechanism of hull structure material 907 steel in seawater[D]. Qingdao: University of Chinese Academy of Science (Institute of Oceanology, Chinese Academy of Sciences), 2019.
|