Wang Zijian, Huang Wei, Peng Ze, Liang Xiao, Deng Jianlin. Effect of tempering temperature on the mechanical properties and microstructures of 1500 MPa hot stamping steel after quenching[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 172-176. doi: 10.7513/j.issn.1004-7638.2024.06.023
Citation: Wang Zijian, Huang Wei, Peng Ze, Liang Xiao, Deng Jianlin. Effect of tempering temperature on the mechanical properties and microstructures of 1500 MPa hot stamping steel after quenching[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 172-176. doi: 10.7513/j.issn.1004-7638.2024.06.023

Effect of tempering temperature on the mechanical properties and microstructures of 1500 MPa hot stamping steel after quenching

doi: 10.7513/j.issn.1004-7638.2024.06.023
  • Received Date: 2023-12-26
    Available Online: 2024-12-30
  • Publish Date: 2024-12-30
  • Quenching and tempering treatment were carried out on a 1 500 MPa hot formed steel, and the effects of tempering temperature on the microstructures and mechanical properties were studied using methods such as metallographic microscopy, room temperature tensile testing, and scanning electron microscopy. The results show that if the Cr content is too high, it will reduce the activity of C and inhibit the formation of carbides. Therefore, the main carbides in the steel are M23C6 and M7C3. As the tempering temperature increases to around 400 ℃, the carbides will transform from M23C6 to M7C3, and the tensile strength, yield strength, and hardness will gradually decrease with the increase of tempering temperature. When the tempering temperature exceeds 400 ℃, the strength will significantly decrease, the elongation will gradually increase by enhancing tempering temperatures. The strength plastic product will first increase and then decrease with the increase of tempering temperature. The high-density dislocations in Flat noodles martensite will decrease, and the martensite will engulf and merge with each other, and then gradually blur with the increase of tempering temperature. Ferrites appear in the matrix. In addition, carbides will also precipitate and grow up.
  • [1]
    Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations[J]. Journal of Materials Processing Technology , 2006, 177(1-3): 396-400.
    [2]
    Nikravesh M, Naderi M, Akbari G H. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel[J]. Materials Science and Engineering: A, 2012,540:24-29. doi: 10.1016/j.msea.2012.01.018
    [3]
    Song Ninghong, Lin Chao, Bi Wenzhen, et al. The effect of tempering time on the microstructure and properties of 1800 MPa hot formed steel[J]. Metal Heat Treatment, 2022,47(08):112-117. (宋宁宏, 林超, 毕文珍, 等. 回火时间对1800 MPa级热成形钢组织和性能的影响[J]. 金属热处理, 2022,47(8):112-117.

    Song Ninghong, Lin Chao, Bi Wenzhen, et al. The effect of tempering time on the microstructure and properties of 1800 MPa hot formed steel[J]. Metal Heat Treatment, 2022, 47(08): 112-117.
    [4]
    Xu Dechao, Zhao Haifeng, Li Xuetao, et al. The effect of tempering temperature on the microstructure and properties of quenched 22MnB5 hot formed steel[J]. Journal of Materials Heat Treatment, 2018,39(8):88-94. (徐德超, 赵海峰, 李学涛, 等. 回火温度对淬火22MnB5热成形钢组织及性能的影响[J]. 材料热处理学 报, 2018,39(8):88-94.

    Xu Dechao, Zhao Haifeng, Li Xuetao, et al. The effect of tempering temperature on the microstructure and properties of quenched 22MnB5 hot formed steel[J]. Journal of Materials Heat Treatment, 2018, 39(8): 88-94.
    [5]
    Cheng Junye, Zhao Aimin, Chen Yinli, et al. Effect of tempering temperature on the microstructure and properties of quenched 30MnB5 hot formed steel[J]. Journal of Beijing University of Science and Technology, 2013,35(9):1150-1157. (程俊业, 赵爱民, 陈银莉, 等. 回火温度对淬火后30MnB5热成形钢组织与性能影响[J]. 北京科技大学学报, 2013,35(9):1150-1157.

    Cheng Junye, Zhao Aimin, Chen Yinli, et al. Effect of tempering temperature on the microstructure and properties of quenched 30MnB5 hot formed steel[J]. Journal of Beijing University of Science and Technology, 2013, 35(9): 1150-1157.
    [6]
    Liu Cheng, Zhao Zhenbo, Northwood Derek O, et al. A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels[J]. Journal of Materials Processing Technology, 2001,113(1-3):556-562. doi: 10.1016/S0924-0136(01)00625-2
    [7]
    Trzaska J. Calculation of critical temperatures by empirical formulae[J]. Archives of Metallurgy and Materials, 2016,61(2):981-986. doi: 10.1515/amm-2016-0167
    [8]
    Sabih A, Elwazri A M, Nemes J A, et al. A workability criterion for the transformed adiabatic shear band phenomena during cold heading of 1038 steel[J]. Journal of Failure Analysis and Prevention, 2006,6:97-105. doi: 10.1007/BF03197706
    [9]
    Daniel Alexandre da Costa Ximenes, Luciano Pessanha Moreira, José Eduardo Ribeiro de Carvalho, et al. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions[J]. Journal of Materials Research and Technology, 2020,9(1):629-635. doi: 10.1016/j.jmrt.2019.11.003
    [10]
    Wang Lijun, Cai Qingwu, Wu Huibin, et al. Effect of tempering temperature on the microstructure and properties of 1500 MPa grade directly quenched steel[J]. Journal of Beijing University of Science and Technology, 2010, 32 (9):1150-1156. (王立军, 蔡庆伍, 武会宾, 等. 回火温度对1500 MPa级直接淬火钢组织与性能的影响[J]. 北京科技大学学报, 2010, 32(9):1150-1156.

    Wang Lijun, Cai Qingwu, Wu Huibin, et al. Effect of tempering temperature on the microstructure and properties of 1500 MPa grade directly quenched steel[J]. Journal of Beijing University of Science and Technology, 2010, 32 (9): 1150-1156.
    [11]
    Liu Yazheng. Fundamentals of material forming theory[M]. Beijing: National Defense Industry Press, 2004:326. (刘雅政. 材料成形理论基础[M]. 北京: 国防工业出版社, 2004:326.

    Liu Yazheng. Fundamentals of material forming theory[M]. Beijing: National Defense Industry Press, 2004: 326.
    [12]
    Chi Hongxiao, Ma Dangsheng, Xu Huiya, et al. Phase transformation of a cold work tool steel during tempering[J]. Journal of Iron and Steel Research, International, 2016(5):484-488.
    [13]
    Liu Qingdong, Liu Wenqing, Wang Zemin, et al. 3D atomic probe characterization of alloy carbides in tempered martensite I Nucleation [J] Journal of Metals, 2009, 45 (11): 1281-1287. (刘庆冬, 刘文庆, 王泽民, 等. 回火马氏体中合金碳化物的 3D 原子探针表征Ⅰ. 形核[J]. 金属学报, 2009, 45(11): 1281-1287.

    Liu Qingdong, Liu Wenqing, Wang Zemin, et al. 3D atomic probe characterization of alloy carbides in tempered martensite I Nucleation [J] Journal of Metals, 2009, 45 (11): 1281-1287.
  • Relative Articles

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (119) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return