Citation: | Tian Fangcheng, Gao Xueyun, Cao Yue, Xing Lei, Hua Liangeng, Wang Haiyan. Modification of inclusions in Ni-Al maraging steels by rare earths[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 151-158. doi: 10.7513/j.issn.1004-7638.2024.06.020 |
[1] |
Gao Xueyun, Wang Haiyan, Li Jie, et al. Cerium-alloyed ultra-high strength maraging steel with good ductility: Experiments, first-principles calculations and phase-field simulations[J]. Materials Science and Engineering: A, 2022,846:143306. doi: 10.1016/j.msea.2022.143306
|
[2] |
Feng Jiawei, Niu Mengchao, Wang Wei, et al. Relationship between mechanical behavior and microstructure for an ultra-high strengthmaraging steel[J]. Chinese Journal of Materials Research, 2019,33(9):641. (冯家伟, 牛梦超, 王威, 等. 超高强度马氏体时效钢的力学行为与微观组织演化的关系[J]. 材料研究学报, 2019,33(9):641. doi: 10.11901/1005.3093.2018.707
Feng Jiawei, Niu Mengchao, Wang Wei, et al. Relationship between mechanical behavior and microstructure for an ultra-high strengthmaraging steel[J]. Chinese Journal of Materials Research, 2019, 33(9): 641. doi: 10.11901/1005.3093.2018.707
|
[3] |
Pereloma E V, Shekhter A, Miller M K, et al. Ageing behaviour of an Fe–20Ni–1.8 Mn–1.6 Ti–0.59 Al (wt%) maraging alloy: clustering, precipitation and hardening[J]. Acta Materialia, 2004,52(19):5589. doi: 10.1016/j.actamat.2004.08.018
|
[4] |
Sha W, Malinov S. Titanium alloys: modelling of microstructure, properties and applications[M]. Elsevier, 2009.
|
[5] |
Shin J H, Jeong J S, Lee J W. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel[J]. Materials Characterization, 2015,99:230. doi: 10.1016/j.matchar.2014.11.024
|
[6] |
Pereloma E V, Stohr R A, Miller M K, et al. Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography[J]. Metallurgical and Materials Transactions A, 2009,40:3069. doi: 10.1007/s11661-009-9993-z
|
[7] |
Taillard R, Pineau A, Thomas B J. The precipitation of the intermetallic compound NiAl in Fe-19wt. % Cr alloys[J]. Materials Science and Engineering, 1982,54(2):209. doi: 10.1016/0025-5416(82)90115-X
|
[8] |
Erlach S D, Leitner H, Bischof M, et al. Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel[J]. Materials Science and Engineering: A, 2006,429(1-2):96. doi: 10.1016/j.msea.2006.05.071
|
[9] |
Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition[J]. Acta Materialia, 2017,129:52. doi: 10.1016/j.actamat.2017.02.069
|
[10] |
Watanabe K, Goto H, Itagaki M. Flow injection analysis of phosphorus in steel using filter tube preconcentration[J]. ISIJ International, 2003,43(11):1767. doi: 10.2355/isijinternational.43.1767
|
[11] |
Wang X, Wu Z, Li B, et al. Inclusions modification by rare earth in steel and the resulting properties: A review[J]. Journal of Rare Earths, 2023,42(3):431-445.
|
[12] |
Chen L, Ma X, Wang L. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr–11Ni austenitic heat-resistant stainless steel[J]. Materials & Design, 2011,32(4):2206.
|
[13] |
Li Linlong, Yang Liqi, Xue Weihai, et al. Sliding friction and wear between rare earth modified GCR15 steel against cage materials[J]. Chinese Journal of Materials Research, 2023,37(6):408. (李林龙, 杨丽琪, 薛伟海, 等. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023,37(6):408.
Li Linlong, Yang Liqi, Xue Weihai, et al. Sliding friction and wear between rare earth modified GCR15 steel against cage materials[J]. Chinese Journal of Materials Research, 2023, 37(6): 408.
|
[14] |
Liu Chengjun, Jiang Maofa, Li Chunlong, et al. Mechanism and effect of rare earth on the impacting toughness of heavy rail steel[J]. The Chinese Journal of Process Engineering, 2006(1):135. (刘承军, 姜茂发, 李春龙, 等. 稀土对重轨钢冲击韧度的影响作用机制[J]. 过程工程学报, 2006(1):135. doi: 10.3321/j.issn:1009-606X.2006.01.031
Liu Chengjun, Jiang Maofa, Li Chunlong, et al. Mechanism and effect of rare earth on the impacting toughness of heavy rail steel[J]. The Chinese Journal of Process Engineering, 2006(1): 135. doi: 10.3321/j.issn:1009-606X.2006.01.031
|
[15] |
Zhang Xiaofeng, Tang Jianping, Han Chunpeng, et al. Analysis on the role of rare earth in steel and the present situation of industrial production[J]. Chinese Rare Earths, 2021,42(4):117. (张晓峰, 唐建平, 韩春鹏, 等. 稀土在钢中作用及工业化生产现状浅析[J]. 稀土, 2021,42(4):117.
Zhang Xiaofeng, Tang Jianping, Han Chunpeng, et al. Analysis on the role of rare earth in steel and the present situation of industrial production[J]. Chinese Rare Earths, 2021, 42(4): 117.
|
[16] |
Wang Y, Li C R, Wang L Z, et al. Effect of yttrium treatment on alumina inclusions in high carbon steel[J]. Journal of Iron and Steel Research International, 2022,29(4):1.
|
[17] |
Chu R S, Mu S K, Liu J, et al. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel[J]. IOP Conference Materials Science and Engineering Series, 2017, 242(1): 012065.
|
[18] |
Liu H L, Liu C J, Jiang M F, et al. Effect of rare earths on impact toughness of a low-carbon steel[J]. Materials & Design, 2012,33:306.
|
[19] |
Gao Jianbing, Chang Pengfei, Zhang Binbin, et al. Effect of Ce on inclusion modification in a new type super duplex stainless steel 2707HD[J]. Iron and Steel, 2018,53(9):37. (高建兵, 常朋飞, 张彬彬, 等. 铈对新型超级双相不锈钢2707HD夹杂物变性的影响[J]. 钢铁, 2018,53(9):37.
Gao Jianbing, Chang Pengfei, Zhang Binbin, et al. Effect of Ce on inclusion modification in a new type super duplex stainless steel 2707HD[J]. Iron and Steel, 2018, 53(9): 37.
|
[20] |
Su Cheng, Feng Guanghong, Zhi Jianguo, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel, 2021,33(12):1289. (宿成, 冯光宏, 智建国, 等. 稀土对耐磨板NM400低温冲击韧性的影响[J]. 钢铁研究学报, 2021,33(12):1289.
Su Cheng, Feng Guanghong, Zhi Jianguo, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel, 2021, 33(12): 1289.
|
[21] |
Lü Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93. doi: 10.7513/j.issn.1004-7638.2019.03.017
Lü Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 93. doi: 10.7513/j.issn.1004-7638.2019.03.017
|
[22] |
Li Wenchao. Thermodynamic of rare earth inclusions generation in steel[J]. Iron and Steel, 1986(3):7. (李文超. 钢中稀土夹杂物生成的热力学规律[J]. 钢铁, 1986(3):7.
Li Wenchao. Thermodynamic of rare earth inclusions generation in steel[J]. Iron and Steel, 1986(3): 7.
|
[23] |
Wang H P, Yu P, Jiang S L, et al. Evolution of inclusions in steelmaking process of rare earth steels containing arsenic with alumina crucibles[J]. Metals, 2020,10(2):275. doi: 10.3390/met10020275
|
[24] |
Liu X, Yang J C. Effect of Ce on inclusions and impact property of 2Cr13 stainless steel[J]. Journal of Iron and Steel Research, 2010,17(12):59. doi: 10.1016/S1006-706X(10)60198-7
|
[25] |
Champi A, Marques F C. Thermal expansion coefficient, mechanical and structural properties of hydrogenated carbon nitrides[J]. Diamond and Related Materials, 2012,25:124. doi: 10.1016/j.diamond.2012.02.021
|