Citation: | Dang Jie, Li Jie, Zhou Peng, Shi Hongyuan, Hui Yuanyuan. Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013 |
[1] |
Yi Peiyun, Peng Linfa, Huang Jiaqiang, et al. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process[J]. Materials Science and Engineering: C, 2016,59:669-676. doi: 10.1016/j.msec.2015.10.071
|
[2] |
Finke B, Polak M, Hempel F, et al. Antimicrobial potential of copper‐containing titanium surfaces generated by ion implantation and dual high power impulse magnetron sputtering[J]. Advanced Engineering Materials, 2012,14(5):224-230.
|
[3] |
Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018,39(4):52-57. (许莹, 王欢欢, 何世宇, 等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.
Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 52-57.
|
[4] |
Gao Ang, Hang Ruiqiang, Bai Long, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application[J]. Electrochimica Acta, 2018,271:699-718. doi: 10.1016/j.electacta.2018.03.180
|
[5] |
An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022,43(4):1-9. (安仲生, 陈岩, 赵巍. 2021年中国钛工业发展报告[J]. 钢铁钒钛, 2022,43(4):1-9.
An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 1-9.
|
[6] |
Cheng Kaiyuan, Pagan Nicholas, Bijukumar Divya, et al. Carburized titanium as a solid lubricant on hip implants: Corrosion, tribocorrosion and biocompatibility aspects[J]. Thin Solid Films, 2018,665:148-158. doi: 10.1016/j.tsf.2018.08.048
|
[7] |
Xue Tong, Attarilar Shokouh, Liu Shifeng, et al. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:1-19. doi: 10.3389/fbioe.2020.00001
|
[8] |
Li Jie, Zhou Peng, Attarilar Shokouh, et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants[J]. Coatings, 2021,11(6):647. doi: 10.3390/coatings11060647
|
[9] |
Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70. (李博, 沈以赴. 钛合金搅拌摩擦焊与搅拌摩擦加工研究进展[J]. 焊接, 2016, 520(10): 22-27, 69-70.
Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70.
|
[10] |
Zykova Anna P, Tarasov Sergei Yu, Chumaevskiy Andrey V, et al. A review of friction stir processing of structural metallic materials: Process, properties, and methods[J]. Metals, 2020, 10(6): 772.
|
[11] |
Vikram Kumar S Jain1, James Varghese, S Muthukumaran. Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing[J]. Arabian Journal for Science and Engineering, 2018,44(2):949-957.
|
[12] |
Zhang Erlin, Fu Shan, Wang Ruoxian, et al. Role of Cu element in biomedical metal alloy design[J]. Rare Metals, 2019, 38(6): 476-494.
|
[13] |
Fang Yingjing, Attarilar Shokouh, Yang Zhi, et al. Toward bactericidal enhancement of additively manufactured titanium implants[J]. Coatings, 2021,11(6):668. doi: 10.3390/coatings11060668
|
[14] |
Zhang Xiangyu, Wang Huizhen, Li Jiangfang, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceramics International, 2016,42(15):17095-17100. doi: 10.1016/j.ceramint.2016.07.220
|
[15] |
Hsu Hsuehchuan, Wu Shihching, Hong Yusheng, et al. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys[J]. Journal of Alloys and Compounds, 2009,479(1-2):390-394. doi: 10.1016/j.jallcom.2008.12.064
|
[16] |
Singh, Abhishek Kumar, Kaushik Lalit, et al. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing[J]. International Journal of Plasticity, 2022,150:103184. doi: 10.1016/j.ijplas.2021.103184
|
[17] |
Wang Liqiang, Xie Lechun, Lü Yuting, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing[J]. Acta Materialia, 2017,131:499-510. doi: 10.1016/j.actamat.2017.03.079
|
[18] |
Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018,47(9):101-108. (郭勇义, 蒋璐瑶, 黄伟九, 等. 慢速搅拌摩擦加工对工业纯钛摩擦磨损性能的影响[J]. 表面技术, 2018,47(9):101-108.
Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018, 47(9): 101-108.
|
[19] |
Farnoush H, Bastami A B, Sadeghi A, et al. Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013,20:90-97. doi: 10.1016/j.jmbbm.2012.12.001
|