Citation: | Zhang Xuefeng, Qing Guangyang, Zhou Haoran, Weng Liu, Chen Min, Zhao Haiquan, Wu Botao, Zhang Xin. Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012 |
[1] |
Nie Huiwen, Zeng Songsheng, Nie Junhong, et al. Influence of VC addition amount on microstructure and properties of laser clad Fe50Mn30Cr10Co10 high-entropy alloy coating[J]. Journal of Mechanical Engineering Materials, 2023,47(4):7-11, 27. (聂辉文, 曾松盛, 聂俊红, 等. VC添加量对激光熔覆Fe50Mn30Cr10Co10高熵合金涂层组织和性能的影响[J]. 机械工程材料, 2023,47(4):7-11, 27. doi: 10.11973/jxgccl202304002
Nie Huiwen, Zeng Songsheng, Nie Junhong, et al. Influence of VC addition amount on microstructure and properties of laser clad Fe50Mn30Cr10Co10 high-entropy alloy coating[J]. Journal of Mechanical Engineering Materials, 2023, 47(4): 7-11, 27. doi: 10.11973/jxgccl202304002
|
[2] |
Wang Haomin, Wang Guoqing, Xiong Yangkai, et al. Microstructure and mechanical properties of laser cladded VC-Cr7C3 composite cladding layer[J]. Heat Treatment of Metals, 2022,47(11):245-252. (王皓民, 汪国庆, 熊杨凯, 等. 激光熔覆VC-Cr7C3复合熔覆层的组织与力学性能[J]. 金属热处理, 2022,47(11):245-252.
Wang Haomin, Wang Guoqing, Xiong Yangkai, et al. Microstructure and mechanical properties of laser cladded VC-Cr7C3 composite cladding layer[J]. Heat Treatment of Metals, 2022, 47(11): 245-252.
|
[3] |
Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of laser cladded in-situ synthesized VC reinforced Fe-Ni based composite coating[J]. Heat Treatment of Metals, 2019,44(7):190-193. (张伟, 冯秋红, 王尔亦, 等. 激光熔覆原位生成VC增强Fe-Ni基复合涂层的组织与硬度[J]. 金属热处理, 2019,44(7):190-193.
Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of laser cladded in-situ synthesized VC reinforced Fe-Ni based composite coating[J]. Heat Treatment of Metals, 2019, 44(7): 190-193.
|
[4] |
Lü Yufang, Xu Peng, Liang Rou, et al. Corrosion resistance of VC-reinforced Fe-based SMA coatings by laser cladding[J]. Surface Coatings Technology, 2024,478(2024):130457.
|
[5] |
Rahman U N, Capuano L, Cabeza S, et al. Directed energy deposition and characterization of high-carbon high speed steels[J]. Additive Manufacturing, 2019, 30(2019): 1-12.
|
[6] |
Cheng Heng, Liu Shuai, Jiang Shaoteng, et al. Effect of CeO2 on the Microstructure and properties of in situ nano-VC reinforced sub-micron Fe-based laser cladding layers[J]. Journal of Materials Engineering and Performance, 2024,33:1-11.
|
[7] |
Shi Kao, Zhou Wenqian, Sun Yufu, et al. Effect of vanadium carbide reinforced particles on wear resistance of laser cladding Fe-Co duplex coating[J]. Journal of Thermal Spray Technology, 2023,32(1):124-134. doi: 10.1007/s11666-022-01477-y
|
[8] |
Zhang Hui, Wu Dongting, Luan Tao, et al. Effects of graphite particle size on microstructure and properties of in-situ Ti-V carbides reinforced Fe-based laser cladding layers[J]. International Journal of Electrochemical Science, 2019, 14(3): 2208-2215.
|
[9] |
Zhuo Yan, Li Chengxiang, Shi Xin, et al. Evaluation model of electromagnetic pulse welding effect based on Vc-β trajectory curve[J]. Journal of Materials Research and Technology, 2022,20:616-626.
|
[10] |
Li Xuejun, Liu Ying, Zhou Tingchuan. Improvement in microstructure and wear-resistance of high chromium cast iron/medium carbon steel bimetal with high vanadium[J]. Materials Research Express, 2021, 8(4): 1-9.
|
[11] |
Ren Yiqun, Li Liqun, Zhou Yuandong, et al. In situ synthesized VC reinforced Fe-based coating by using extreme high-speed laser cladding[J]. Materials Letters, 2022, 315: 131962.
|
[12] |
Peng Zhiliang, Zhang Jian, Zhang Mingjun, et al. Laser in-situ preparation and mechanical properties of VC reinforced Fe-based wear-resistant composite cladding[J]. Ceramics International, 2022, 48(19): 28240-28249.
|
[13] |
Gao Yu, Liu Ying, Wang Lu, et al. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3[J]. Surface Coatings Technology, 2022, 435: 128264.
|
[14] |
Kirchgaßner M, Badisch E, Franek F. Behaviour of iron-based hardfacing alloys under abrasion and impact[J]. Wear, 2008,265(5):772-779.
|
[15] |
Liang Z G, Zhan J M, Shi W Q, et al. Parameters optimization of the laser cladding of a Fe-based VC composite coating using response surface methodology (RSM)[J]. Lasers in Engineering, 2021,49:179-203.
|
[16] |
Liu Changyu, Xu Peng, Pang Chi, et al. Phase transformation in Fe–Mn–Si SMA/WC composite coating developed by laser cladding[J]. Materials Chemistry and Physics, 2021,267:124595.
|
[17] |
Chung R J, Tang X, Li D Y, et al. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance[J]. Wear, 2013, 301(1-2): 695-706.
|
[18] |
Eremin E N, Losev A, Ponomarev I A, et al. Structure and properties of the weld metal N8G6M3FTB after aging[J]. AIP Conference Proceedings, 2019, 214: 40004.
|
[19] |
Yang Xiong, Chen Yarong, Zhang Zhenlin, et al. Study on microstructure and properties of laser-clad Fe-based (Ti, V)C composite coatings[J]. Surface Coatings Technology, 2023,464:129552.
|
[20] |
Kannan Rajesh G, Sathiya P, Bharathi D T K, et al. Welding parameter optimization by whale optimization algorithm and experimental investigation on microstructure and mechanical properties of spin arc welded 15CDV6 HSLA steel[J]. Metals and Materials International, 2023,29(9):2743-2759. doi: 10.1007/s12540-023-01406-w
|
[21] |
Wang Haiyang, Zhang Song, Zhang Chunhua, et al. Effects of V and Cr on laser cladded Fe-based coatings[J]. Coatings, 2018,8(3):107-118. doi: 10.3390/coatings8030107
|
[22] |
Cao Yabin, Ma Zeming, Zhu Hao, et al. Evolution behavior regulation of carbide in Fe-based laser cladding coating[J]. Materials Research Express, 2019,6(11):116590-116590. doi: 10.1088/2053-1591/ab4c5f
|
[23] |
Zong Weian, Zhang Song, Zhang Chunhua, et al. Preparation and characterization of in situ carbide particle reinforced Fe-based gradient materials by laser melt deposition[J]. Coatings, 2019,9(8):467-481. doi: 10.3390/coatings9080467
|
[24] |
Wang Yanfang, Zhou Xuejing, Song Zihan, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding[J]. China Surface Engineering 2024, 37(3): 1-12. (王彦芳, 周雪景, 宋子翰, 等. 热丝激光熔覆Cr-W-Mo-V钢涂层组织与腐蚀磨损性能[J]. 中国表面工程, 2024, 37(3): 1-12.
Wang Yanfang, Zhou Xuejing, Song Zihan, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding[J]. China Surface Engineering 2024, 37(3): 1-12.
|