Du Jinjing, Liu Jingtian, Zhu Jun, Lin Haiyang, Zhai Ruitong, Zuo Heng, Ma Jiayi, Wang Dongbo. Preparation and properties of V1-xTbxO2(x=0,1,2,3,4)(M) thin films[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 80-86. doi: 10.7513/j.issn.1004-7638.2024.06.011
Citation: Du Jinjing, Liu Jingtian, Zhu Jun, Lin Haiyang, Zhai Ruitong, Zuo Heng, Ma Jiayi, Wang Dongbo. Preparation and properties of V1-xTbxO2(x=0,1,2,3,4)(M) thin films[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 80-86. doi: 10.7513/j.issn.1004-7638.2024.06.011

Preparation and properties of V1-xTbxO2(x=0,1,2,3,4)(M) thin films

doi: 10.7513/j.issn.1004-7638.2024.06.011
  • Received Date: 2024-05-22
    Available Online: 2024-12-30
  • Publish Date: 2024-12-30
  • This article mainly investigated the effects of heavy rare earth terbium element (Tb) doping on the phase structure, microstructure, phase transition temperature, optical, and mechanical properties of vanadium dioxide thin films V1-xTbxO2(x=0,1,2,3,4)(M). The analysis results show that the diffraction peaks of V1-xTbxO2(x=0,1,2,3,4)(M) samples are sharp, with no other impurity peaks observed, indicating high crystallinity and purity. Tb element doping can significantly affect the microstructural characteristics of vanadium dioxide, with the phase transition temperature decreasing as the Tb doping level increases, reaching 59.01 ℃ at a doping level of 4%. UV-Vis-NIR analysis indicates enhanced optical properties of vanadium dioxide thin films at Tb doping levels of 1%~4%. At 2% Tb doping, solar modulating ability (ΔTsol) reaches 9.1%, and visible transmittance (Tlum) is 61.5%. At 4% Tb doping, visible transmittance reaches 72.5%. Mechanical property tests show that Tb doping enhances the mechanical properties of vanadium dioxide thin films. When the doping level is 2%, the mechanical properties of VO2 films exhibit maximum values, with elastic modulus and hardness being 83.6065 GPa and 8.0026 GPa, respectively.
  • [1]
    Gao Y F, Luo H J, Zhang Z T, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy, 2012,1(2):221-246. doi: 10.1016/j.nanoen.2011.12.002
    [2]
    Jiang Kejun. IPCC special report on 1.5 ℃ warming: a starting of new era of global mitigation[J]. Climate Change Research, 2018,14(6):640-642. (姜克隽. IPCC 1.5 ℃ 特别报告发布: 温室气体减排新时代的标志[J]. 气候变化研究进展, 2018,14(6):640-642.

    Jiang Kejun. IPCC special report on 1.5 ℃ warming: a starting of new era of global mitigation[J]. Climate Change Research, 2018, 14(6): 640-642.
    [3]
    Lao Bin, Zheng Xuan, Li Sheng, et al. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides[J]. Acta Physica Sinica, 2023,72(9):223-240. (劳斌, 郑轩, 李晟, 等. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展[J]. 物理学报, 2023,72(9):223-240.

    Lao Bin, Zheng Xuan, Li Sheng, et al. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides[J]. Acta Physica Sinica, 2023, 72(9): 223-240.
    [4]
    Pavelyev V, Sharma P, Rymzhina A, et al. Advances in transition metal dichalcogenides-based flexible photodetectors[J]. Journal of Materials Science-Materials in Electronics, 2022,33(32):24397-24433. doi: 10.1007/s10854-022-09204-7
    [5]
    Chi Liping, Niu Zhuangzhuang, Liao Jie, et al. Recent progress in intercalation chemistry of transition metal oxides for electrocatalytic applications[J]. Chemical Journal of Chinese Universities, 2023,44(5):225-249. (池丽萍, 牛壮壮, 廖洁, 等. 过渡金属氧化物插层化学及其电催化应用的新进展[J]. 高等学校化学学报, 2023,44(5):225-249.

    Chi Liping, Niu Zhuangzhuang, Liao Jie, et al. Recent progress in intercalation chemistry of transition metal oxides for electrocatalytic applications[J]. Chemical Journal of Chinese Universities, 2023, 44(5): 225-249.
    [6]
    Zheng Wei, Liang Gemeng, Zhang Shilin, et al. Understanding voltage hysteresis and decay during anionic redox reaction in layered transition metal oxide cathodes: A critical review[J]. Nano Research, 2023,16(3):3766-3780. doi: 10.1007/s12274-022-5003-1
    [7]
    Wei Jiang, Ji Heng, Guo Wenhua, et al. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams[J]. Nature Nanotechnology, 2012,7(6):357-362. doi: 10.1038/nnano.2012.70
    [8]
    Zylbersztejn A, Mott N F. Metal-insulator transition in vanadium dioxide[J]. Physical Review B: Solid State, 1975,11(11):4383-4395. doi: 10.1103/PhysRevB.11.4383
    [9]
    Morin F J. Oxides that show a metal-to-insulator transition at the Neel temperature[J]. Physical Review Letters, 1959,3(1):34-36. doi: 10.1103/PhysRevLett.3.34
    [10]
    Hu Peng, Hu Ping, Vu Tuan Duc, et al. Vanadium oxide: Phase diagrams, structures, synthesis, and applications[J]. Chemical Reviews, 2023,123(8):4353-4415. doi: 10.1021/acs.chemrev.2c00546
    [11]
    Shi Qianqian, Wang Jiang, Cheng Guanghua. Preparation technology and application of vanadium dioxide thin films (Invited)[J]. Acta Photonica Sinica, 2022,51(10):340-358. (石倩倩, 王江, 程光华. 二氧化钒薄膜的制备技术及应用进展(特邀)[J]. 光子学报, 2022,51(10):340-358.

    Shi Qianqian, Wang Jiang, Cheng Guanghua. Preparation technology and application of vanadium dioxide thin films (Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 340-358.
    [12]
    Zhao Ruirui, Yang Mingqing, Niu Chunhui, et al. Advances in preparation and photoelectrical properties of vanadium dioxide films[J]. Materials China, 2023,42(4):353-360. (赵瑞瑞, 杨明庆, 牛春晖, 等. 二氧化钒薄膜的制备及光电性能研究进展[J]. 中国材料进展, 2023,42(4):353-360.

    Zhao Ruirui, Yang Mingqing, Niu Chunhui, et al. Advances in preparation and photoelectrical properties of vanadium dioxide films[J]. Materials China, 2023, 42(4): 353-360.
    [13]
    Chaillou J, Chen Y F, Émond N, et al. Combined role of substrate and doping on the semiconductor-to-metal transition of VO2 thin films[J]. ACS Applied Electronic Materials, 2022,4(4):1841-1851. doi: 10.1021/acsaelm.2c00080
    [14]
    Xue Yibei, Yin Shu. Element doping: a marvelous strategy for pioneering the smart applications of VO2[J]. Nanoscale, 2022,14(31):11054-11097. doi: 10.1039/D2NR01864K
    [15]
    Cao J, Ertekin E, Srinivasan V, et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams[J]. Nature Nanotechnology, 2009,4(11):732-737. doi: 10.1038/nnano.2009.266
    [16]
    Shannon R D. Crystal physics, diffraction, theoretical and general crystallography[J]. Acta Crystallographica Section A, 1976,32(5):751-767. doi: 10.1107/S0567739476001551
    [17]
    Chen Lanli, Liu Yuchen, Yang Kebing, et al. Theoretical study of the electronic and optical properties of rare-earth (RE = La, Ce, Pr, Nd, Eu, Gd, Tb)-doped VO2 nanoparticles[J]. Computational Materials Science, 2019,161:415-421. doi: 10.1016/j.commatsci.2019.02.001
    [18]
    Wyszecki G, Stiles V S, Kelly K L. Color science: Concepts and methods, quantitative data and formulas[J]. Physics Today, 1968,21(6):83-84. doi: 10.1063/1.3035025
    [19]
    ASTM G173-03(2012). Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface[S].
    [20]
    Oliver W, Pharr G. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004,19(1):3-20. doi: 10.1557/jmr.2004.19.1.3
    [21]
    Zhang Xianyuan. Experimental analysis on indentation and scratch of single crystal GaN[J]. Journal of Materials Science and Engineering, 2021,39(6):1028-1034. (张先源. 单晶氮化镓纳米压痕与划痕实验[J]. 材料科学与工程学报, 2021,39(6):1028-1034.

    Zhang Xianyuan. Experimental analysis on indentation and scratch of single crystal GaN[J]. Journal of Materials Science and Engineering, 2021, 39(6): 1028-1034.
  • Relative Articles

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (82) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return