Wang Xinyu, Zhao Haiquan, Qi Yuanhong, Wang Feng. Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 50-58. doi: 10.7513/j.issn.1004-7638.2024.06.007
Citation: Wang Xinyu, Zhao Haiquan, Qi Yuanhong, Wang Feng. Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 50-58. doi: 10.7513/j.issn.1004-7638.2024.06.007

Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite

doi: 10.7513/j.issn.1004-7638.2024.06.007
  • Received Date: 2024-04-07
    Available Online: 2024-12-30
  • Publish Date: 2024-12-30
  • Vanadium extraction tailings of vanadium-titanium magnetite, as a by-product of vanadium extraction from converter vanadium slag, have great recovery value because of containing many valuable elements. However, due to the lack of effective utilization technology, they are currently being landfilled or stockpiled in large quantities, leading to resource waste and environmental pollution, resulting in waste of resources and environmental pollution. In this paper vanadium extraction tailings of vanadium-titanium magnetite had been classified based on vanadium extraction technology from vanadium slag and their chemical composition. The principle, advantages and disadvantages of extracting valuable elements from vanadium extraction tailings by oxidation method (including oxidation roasting, electric field coupled leaching of H2O2 + CaF2), direct leaching (including acid leaching and submolten salt process) and reduction method (including melting reduction and direct reduction) were described. The current research status of using them as functional materials for preparing thermal storage materials had been discussed. Acid leaching process is considered to be a hot topic of current research. However, smelting reduction can simultaneously recover iron, vanadium, chromium and titanium, featuring a high comprehensive recovery rate and short process, and therefore has a broader application prospect. Then he problems existing in the current comprehensive utilization process were pointed out. And the coupling technology of pyrometallurgy + hydrometallurgy + physical separation was proposed, as well as research directions for their use as solar thermal storage materials. In addition, the supervision of final residue and waste liquid discharge and the research on toxicity detection should be strengthened. It is hoped these introductions can provide reference for the development direction of high value and harmless comprehensive utilization of vanadium extraction tailings from vanadium titanium magnetite.
  • [1]
    Sui Yulei, Guo Yufeng, Travyanov A Y, et al. Reduction roasting-magnetic separation of vanadium tailings in presence of sodium sulfate and its mechanisms[J]. Rare Met., 2016,35:954-960. doi: 10.1007/s12598-015-0616-0
    [2]
    Yuan Rui, Li Shaolong, Che Yusi, et al. A critical review on extraction and refining of vanadium metal[J]. Int. J. Refract. H., 2021,101:105696. doi: 10.1016/j.ijrmhm.2021.105696
    [3]
    Xiang Junyi, Huang Qingyun, Lü Wei, et al. Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment[J]. J. Hazard. Mater., 2018,357:128-137. doi: 10.1016/j.jhazmat.2018.05.064
    [4]
    Li Lanjie, Zhao Beibei, Gao Minglei, et al. Clean utilization of solid waste of vanadium chemical and metallurgy[J]. The Chinese Journal of Process Engineering, 2019,19(S1):99-108. (李兰杰, 赵备备, 高明磊, 等. 钒化工冶金固废资源化清洁利用[J]. 过程工程学报, 2019,19(增刊1):99-108.

    Li Lanjie, Zhao Beibei, Gao Minglei, et al. Clean utilization of solid waste of vanadium chemical and metallurgy[J]. The Chinese Journal of Process Engineering, 2019, 19(S1): 99-108.
    [5]
    Gilligan R, Nikoloski A N. The extraction of vanadium from titanomagnetites and other sources[J]. Miner. Eng., 2020,146:10610.
    [6]
    Wang Xin, Xiang Junyi, Ling Jiawei, et al. Comprehensive utilization of vanadium extraction tailings: A brief review[C]// Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. Springer, 2020: 327-334.
    [7]
    Huo Zhihao, Wang Mei, Yue Hongrui. Technology of extracting vanadium from vanadium slag by sodium roasting and comprehensive utilization of vanadium tailings[C]//Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society of Environmental Sciences (II). Nanchang: China Agricultural University Press, 2022: 1075-1078. (霍志豪, 王梅, 岳宏瑞. 钒渣钠化焙烧提钒工艺及提钒尾渣综合利用[C]//中国环境科学学会2022年科学技术年会论文集(II). 南昌: 中国农业大学出版社, 2022: 1075-1078.

    Huo Zhihao, Wang Mei, Yue Hongrui. Technology of extracting vanadium from vanadium slag by sodium roasting and comprehensive utilization of vanadium tailings[C]//Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society of Environmental Sciences (II). Nanchang: China Agricultural University Press, 2022: 1075-1078.
    [8]
    Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro Alloys, 2018,49(1):40-43. (许崇光, 王海林, 杨欢, 等. 提钒尾渣的综合利用[J]. 铁合金, 2018,49(1):40-43.

    Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro Alloys, 2018, 49(1): 40-43.
    [9]
    Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. Chin. J. Process Eng, 2017,17(1):138-143. (李兰杰, 赵备备, 王海旭, 等. 提钒尾渣高效脱碱及配矿炼铁工艺[J]. 过程工程学报, 2017,17(1):138-143. doi: 10.12034/j.issn.1009-606X.216215

    Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. Chin. J. Process Eng, 2017, 17(1): 138-143. doi: 10.12034/j.issn.1009-606X.216215
    [10]
    Guo Rui, Zhou Mi, Xie Huaqing, et al. Experimental research on preparation of ferrochrome by reducing vanadium tailings with peanut shell[J]. Sintering and Pelletizing, 2022,47(6):116-122. (郭锐, 周密, 谢华清, 等. 花生壳还原提钒尾渣制备铬铁合金的试验研究[J]. 烧结球团, 2022,47(6):116-122.

    Guo Rui, Zhou Mi, Xie Huaqing, et al. Experimental research on preparation of ferrochrome by reducing vanadium tailings with peanut shell[J]. Sintering and Pelletizing, 2022, 47(6): 116-122.
    [11]
    Kim E, Spooren J, Broos K, et al. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching[J]. Hydrometallurgy, 2015,158:139-148. doi: 10.1016/j.hydromet.2015.10.024
    [12]
    Zhao Qifeng, Wang Xiwen, Xia Wei, et al. Research status and prospect of vanadium sodium waste waste[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference. Ma, anshan: Chinese Society for Metals, 2021: 515-520. (赵奇丰, 王熙文, 夏伟, 等. 钠化提钒废渣综合利用研究现状及展望[C]//第十一届全国能源与热工学术年会论文集. 马鞍山: 中国金属学会能源与热工分会, 2021: 515-520.

    Zhao Qifeng, Wang Xiwen, Xia Wei, et al. Research status and prospect of vanadium sodium waste waste[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference. Ma, anshan: Chinese Society for Metals, 2021: 515-520.
    [13]
    Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021,56(7):152-160. (刘金生, 丁学勇, 薛向欣, 等. 提钒尾渣资源化综合利用的研究进展[J]. 钢铁, 2021,56(7):152-160.

    Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7): 152-160.
    [14]
    Gao Feng, Du Hao, Liu Biao, et al. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. Iron Steel Vanadium Titanium, 2023,44(1):84-91. (高峰, 杜浩, 刘彪, 等. 钙基提钒尾渣强化还原-磁选分离钛铁技术研究[J]. 钢铁钒钛, 2023,44(1):84-91.

    Gao Feng, Du Hao, Liu Biao, et al. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 84-91.
    [15]
    Wang Guang. Fundamental study on synergistic reduction of vanadium extraction tailings with high content chromium and chromite to smelt high carbon ferrochromium[D]. Chongqing: Chongqing University, 2020. (王广. 高铬型提钒尾渣与铬铁矿协同还原冶炼高碳铬铁的基础研究[D]. 重庆: 重庆大学, 2020.

    Wang Guang. Fundamental study on synergistic reduction of vanadium extraction tailings with high content chromium and chromite to smelt high carbon ferrochromium[D]. Chongqing: Chongqing University, 2020.
    [16]
    Liu Shiyuan, Wang Lijun, Chen Jun, et al. Research progress of vanadium extraction processes from vanadium slag: A review[J]. Sep. Purif. Technol. , 2024: 127035.
    [17]
    Zhang Ying, Zhang Ting,an, Dreisinger David, et al. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching[J]. J. Hazard. Mater., 2019,369:632-641. doi: 10.1016/j.jhazmat.2019.02.081
    [18]
    Li Fangfang, Wen Jing, Yu Tangxia, et al. Synergic acid leaching of vanadium from sodium vanadium extraction tailings[J/OL]. Multipurpose Utilization of Mineral Resources [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010. (李芳芳, 温婧, 余唐霞, 等. 钠化提钒尾渣协同酸浸提钒[J/OL]. 矿产综合利用 [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010.

    Li Fangfang, Wen Jing, Yu Tangxia, et al. Synergic acid leaching of vanadium from sodium vanadium extraction tailings[J/OL]. Multipurpose Utilization of Mineral Resources [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010.
    [19]
    Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015,36(3):49-56. (孟利鹏, 赵楚, 王少娜, 等. 国内提钒尾渣再提钒技术研究进展[J]. 钢铁钒钛, 2015,36(3):49-56.

    Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015, 36(3): 49-56.
    [20]
    Liu Bao, Li Jin, Ren Qianqian, et al. Leaching behavior and mineralogical evolution of vanadium released from sodium roasted-acid leaching tailing of vanadium slag[J]. J. of Iron Steel Res. Int., 2022,29(5):772-782. doi: 10.1007/s42243-021-00716-w
    [21]
    Zhang Xuefeng, Liu Fengguo, Xue Xiangxin, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content[J]. J. Alloy. Comp., 2016,686:356-365. doi: 10.1016/j.jallcom.2016.06.038
    [22]
    Li Wei, Fu Guiqin, Chu Mansheng, et al. Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets[J]. Ironmak. Steelmak., 2016,44:294-303.
    [23]
    Lü Changxiao, Zhang Ting, an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020,44(11):1208-1214. (吕昌晓, 张廷安, 张莹, 等. 从钙化焙烧-酸浸尾渣中综合回收钒的研究[J]. 稀有金属, 2020,44(11):1208-1214.

    Lü Changxiao, Zhang Ting, an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020, 44(11): 1208-1214.
    [24]
    Rahman A, Behnam S. Recovery of vanadium from secondary tailing of iron ore by salt roasting-alkaline leaching and solvent extraction processes[J]. Iran. J. Earth Sci., 2019,11(1):30-37.
    [25]
    Wen Jin, Jiang Tao, Gao Huiyang, et al. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide[J]. J. Environ. Manage., 2019,244:119-126. doi: 10.1016/j.jenvman.2019.05.037
    [26]
    Cheng Jie, Li Hongyi, Chen Xinmian, et al. Eco-friendly chromium recovery from hazardous chromium-containing vanadium extraction tailings via low-dosage roasting[J]. Process Saf. Environ., 2022,164:818-826. doi: 10.1016/j.psep.2022.06.065
    [27]
    Tavakolikhaledi M R. Vanadium: Leaching and solvent extraction[D]. Vancouver: University of British Columbia, 2014.
    [28]
    Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine-and-iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022,42(2):106-108. (堵伟桐, 姜丛翔, 陈卓, 等. 高氯高铁型四氯化钛除钒尾渣焙烧提钒工艺研究[J]. 矿冶工程, 2022,42(2):106-108.

    Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine-and-iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022, 42(2): 106-108.
    [29]
    Yu Qiang. Study on deep extraction of vanadium from calcified acid leaching tailings[D]. Chongqing: Chongqing University, 2021. (余强. 钙化酸浸提钒尾渣深度提钒的研究[D]. 重庆: 重庆大学, 2021.

    Yu Qiang. Study on deep extraction of vanadium from calcified acid leaching tailings[D]. Chongqing: Chongqing University, 2021.
    [30]
    Dong Mengqi. Recovery and utilization of iron resources in pressurized acid leaching residue of laterite nickel ore[D]. Kunming: Kunming University of Science and Technology, 2023. (董梦奇. 红土镍矿加压酸浸渣铁资源的回收利用[D]. 昆明: 昆明理工大学, 2023.

    Dong Mengqi. Recovery and utilization of iron resources in pressurized acid leaching residue of laterite nickel ore[D]. Kunming: Kunming University of Science and Technology, 2023.
    [31]
    Kolmachikhina E B, Lugovitskaya T N, Tretiak M A, et al. Surfactants and their mixtures under conditions of autoclave sulfuric acid leaching of zinc concentrate: Surfactant selection and laboratory tests[J]. Trans. Nonferrous Met. Soc. China, 2023,33:3529-3543. doi: 10.1016/S1003-6326(23)66352-6
    [32]
    Liu Cun, Li Yun, Guo Hongfei, et al. Preparation of spherical hydroxycancrinite from potassic rocks activated by sub-molten salt[J]. Journal of Chemical Engineering of Chinese Universities, 2023,37(4):623-632. (刘存, 李雲, 郭宏飞, 等. 亚熔盐活化含钾岩石制备球形羟基钙霞石[J]. 高校化学工程学报, 2023,37(4):623-632.

    Liu Cun, Li Yun, Guo Hongfei, et al. Preparation of spherical hydroxycancrinite from potassic rocks activated by sub-molten salt[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(4): 623-632.
    [33]
    Wu Enhui, Zhu Rong, Yang Shaoli, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015,36(5):40-46. (吴恩辉, 朱荣, 杨绍利, 等. 提钒尾渣含碳球团电弧炉熔融还原热力学分析与试验[J]. 钢铁钒钛, 2015,36(5):40-46.

    Wu Enhui, Zhu Rong, Yang Shaoli, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 40-46.
    [34]
    Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6):103-108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017(6):103-108.

    Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6): 103-108.
    [35]
    Leng Guanghui, Cao Hui, Peng Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017,6(5):1058-1075. (冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017,6(5):1058-1075.

    Leng Guanghui, Cao Hui, Peng Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075.
    [36]
    Kuravi S, Trahan J, Yogi Goswami D, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Prog. Energ. Combust., 2013,39:285-319. doi: 10.1016/j.pecs.2013.02.001
    [37]
    Xu Xiaohong, Lao Xinbin, Wu Jianfeng, et al. Synthesis and characterization of Al2O3/SiC composite ceramics via carbothermal reduction of alumino-silicate precursor for solar sensible thermal storage[J]. J. Alloys Compd., 2016,662:126-137. doi: 10.1016/j.jallcom.2015.12.038
    [38]
    Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020,41(6):52-59. (朴荣勋, 李轩, 李国伟, 等. 利用提钒尾渣和石墨制备高温显热蓄热材料的研究[J]. 钢铁钒钛, 2020,41(6):52-59.

    Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 52-59.
    [39]
    Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. Iron Steel Vanadium Titanium, 2021,42(1):93-99. (朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021,42(1):93-99.

    Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 93-99.
    [40]
    Hou Zongchen. Preparation and performance research on a new modified solid high-temperature sensible heat storage materials[D]. Zhejiang: Zhejiang University, 2023. (侯宗臣. 新型改性固体高温显热蓄热材料的制备与性能研究[D]. 浙江: 浙江大学, 2023.

    Hou Zongchen. Preparation and performance research on a new modified solid high-temperature sensible heat storage materials[D]. Zhejiang: Zhejiang University, 2023.
    [41]
    Xu Zhong, Hou Jing, Li Jun, et al. Investigation on heat storage characteristics of vanadium tailings/carbon foam/organic matter composite phase change material[J/OL]. Multipurpose Utilization of Mineral Resources, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008. (徐众, 侯静, 李军, 等. 提钒尾渣/泡沫碳/有机质复合相变材料蓄热性能[J/OL]. 矿产综合利用, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008.

    Xu Zhong, Hou Jing, Li Jun, et al. Investigation on heat storage characteristics of vanadium tailings/carbon foam/organic matter composite phase change material[J/OL]. Multipurpose Utilization of Mineral Resources, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008.
    [42]
    Xu Zhong, Li Jun, Wu Enhui, et al. Influence of vanadium tailings on the thermal stability and electrical conductivity of expanded graphite/paraffin composite phase change materials[J]. Chinese Journal of Applied Chemistry, 2022(3):461-469. (徐众, 李军, 吴恩辉, 等. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022(3):461-469.

    Xu Zhong, Li Jun, Wu Enhui, et al. Influence of vanadium tailings on the thermal stability and electrical conductivity of expanded graphite/paraffin composite phase change materials[J]. Chinese Journal of Applied Chemistry, 2022(3): 461-469.
    [43]
    Xu Zhong, Hou Jing, Li Jun, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021,49(5):115-119. (徐众, 侯静, 李军, 等. 提钒尾渣对膨胀石墨/石蜡复合相变材料导热性能的影响[J]. 化工新型材料, 2021,49(5):115-119.

    Xu Zhong, Hou Jing, Li Jun, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021, 49(5): 115-119.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (177) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return