ABuLikemu·Yasen, Luo Kaimin, Li Jing, Yao Yongkuan, Hu Daofeng, Li Xiang. Influence of End-point Temperature Control on Dephosphorization for 100t Top and Bottom Combined Blown Converter Process[J]. IRON STEEL VANADIUM TITANIUM, 2015, 36(6): 113-116. doi: 10.7513/j.issn.1004-7638.2015.06.021
Citation: Liu Runqi, Zhu Yanyu, Chen Xingyue, Zhang Peng. Sustainable synthesis of ZSM-5 zeolite from iron ore tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 111-117. doi: 10.7513/j.issn.1004-7638.2023.02.016

Sustainable synthesis of ZSM-5 zeolite from iron ore tailings

doi: 10.7513/j.issn.1004-7638.2023.02.016
  • Received Date: 2022-11-16
  • Publish Date: 2023-04-30
  • In view of the high silicon and aluminum content of iron ore tailings (IOT) in Chengde, Hebei province, ZSM-5 zeolite was prepared with IOT as the raw materials. At present, the synthesis of zeolite from solid waste usually uses hydrothermal method, which is a complex synthesis process with low utilization rate of single reactor and produces wastewater. Our approach focused on reutilization of IOT by converting it to ZSM-5 via solvent-free method. It shows that the optimal synthesis parameters of ZSM-5 zeolite are HDA/SiO2=0.1, Na2CO3·10H2O/SiO2=0.4, and crystallization at 150 ℃ for 6 days. The obtained ZSM-5 zeolite has bimodal meso- and micro-porous structure, with a surface area of micropores of 213.25 m2∙g−1 and an external surface area of 95.53 m2∙g−1. In addition, the elemental utilization rate of the solvent-free method is higher than that of the conventional hydrothermal method, and the elemental utilization rates of Si and Al for the solvent-free method are 94.83% and 95.89%, respectively, while those for the hydrothermal method were only 80%.
  • [1]
    Yan Qinping. Study on the development and utilization of iron ore tailings in China[J]. Scrap Iron and Steel in China, 2014,(3):33−38. (闫启平. 我国铁矿尾矿渣粉开发利用之研究[J]. 中国废钢铁, 2014,(3):33−38.
    [2]
    Zhang Peng, Chen Xingyue, Ren Zhifeng, et al. Investigating kinetics in preparation of precipitated silica from iron ore tailings[J]. Iron Steel Vanadium Titanium, 2014,43(3):33−38. (张鹏, 陈星月, 任志峰, 等. 铁尾矿煅烧酸浸法制备白炭黑及动力学研究[J]. 钢铁钒钛, 2014,43(3):33−38.
    [3]
    Deng Wen, Jiang Dengbang, Yang Bo, et al. Comprehensive utilization status and existing problems of iron tailings in China[J]. Modern Mining, 2012,(9):1−3. (邓文, 江登榜, 杨波, 等. 我国铁尾矿综合利用现状和存在的问题[J]. 现代矿业, 2012,(9):1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001
    [4]
    Mc Donald J E D, Roache S S C, Kawatra K. Repurposing mine tailings: Cold bonding of siliceous iron ore tailings[J]. Minerals & Metallurgical Processing, 2016,31(1):47−52.
    [5]
    Osinubi K J, Yohanna P, Eberemu A O. Cement modification of tropical black clay using iron ore tailings as admixture[J]. Transportation Geotechnics, 2015,10(5):35−49.
    [6]
    Sirkeei A A, Gul A, Bulut G. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator[J]. Mineral Processing and Extractive Metallurgy Review, 2006,27(2):131−141. doi: 10.1080/08827500600563343
    [7]
    Wang C L, Ni W, Zhang S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016,104(1):109−115.
    [8]
    Liu X F, Zhang S J, Wang R W, et al. Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates[J]. Chemical Research in Chinese Universities, 2018,34(3):350−357. doi: 10.1007/s40242-018-7400-2
    [9]
    Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking[J]. Chem Cat Chem, 2014,6(1):67−81.
    [10]
    Li J, Wei Z, Chen Y, et al. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites[J]. Journal of Catalysis, 2014,317:277−283. doi: 10.1016/j.jcat.2014.05.015
    [11]
    Sun X Y, Mueller S, Shi H, et al. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J]. Journal of Catalysis, 2014,314:21−31. doi: 10.1016/j.jcat.2014.03.013
    [12]
    Kim Y, Kim K, Ryoo R. Cooperative structure direction of diammonium surfactants and sodium ions to generate MFI zeolite nanocrystals of controlled thickness[J]. Chemistry of Materials, 2017,29(4):1752−1757. doi: 10.1021/acs.chemmater.6b05338
    [13]
    Kyungsu N, Minkee C, Woojin P, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010,132(12):4169−4177. doi: 10.1021/ja908382n
    [14]
    Akyalcin S, Akyalcin L, Bjørgen M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method[J]. Microporous and Mesoporous Materials, 2019,273(1):256−264.
    [15]
    Abelló S, Bonilla A, Pérez-Ramírez J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis a General, 2009,364(1-2):191−198. doi: 10.1016/j.apcata.2009.05.055
    [16]
    Zhang P, Li S Q, Guo P H, et al. Synthesis of ZSM-5 microspheres made of nanocrystals from iron ore tailings by the solid phase conversion method[J]. Langmuir, 2020,36:6160−6168. doi: 10.1021/acs.langmuir.0c00570
    [17]
    Ren L M, Wu Q M, Yang C G, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. J. Am. Chem. Soc., 2012,134:15173−15176. doi: 10.1021/ja3044954
    [18]
    Kamimura Y, Itabashi K J, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and ‘‘Green MTW’’ from sodium aluminosilicate gel systems[J]. Microporous and Mesoporous Materials, 2012,147:149−156. doi: 10.1016/j.micromeso.2011.05.038
    [19]
    Zhang C Q, Li S Q, Bao S C. Sustainable synthesis of ZSM-5 zeolite from rice husk ash without addition of solvents[J]. Waste and Biomass Valorization, 2019,10:2825−2835. doi: 10.1007/s12649-018-0356-0
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-0105101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.0 %FULLTEXT: 10.0 %META: 86.4 %META: 86.4 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 66.4 %其他: 66.4 %上海: 0.9 %上海: 0.9 %东莞: 0.9 %东莞: 0.9 %乌鲁木齐: 0.9 %乌鲁木齐: 0.9 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 13.6 %芒廷维尤: 13.6 %西宁: 12.7 %西宁: 12.7 %贵阳: 0.9 %贵阳: 0.9 %长沙: 2.7 %长沙: 2.7 %其他上海东莞乌鲁木齐石家庄芒廷维尤西宁贵阳长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (252) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return