中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋装备用921钢的增材修复专用粉体及工艺研究

王一甲 李彬周 段涛 张大越 孙瑞琪 刘宝权

王一甲, 李彬周, 段涛, 张大越, 孙瑞琪, 刘宝权. 海洋装备用921钢的增材修复专用粉体及工艺研究[J]. 钢铁钒钛, 2025, 46(2): 169-174, 181. doi: 10.7513/j.issn.1004-7638.2025.02.023
引用本文: 王一甲, 李彬周, 段涛, 张大越, 孙瑞琪, 刘宝权. 海洋装备用921钢的增材修复专用粉体及工艺研究[J]. 钢铁钒钛, 2025, 46(2): 169-174, 181. doi: 10.7513/j.issn.1004-7638.2025.02.023
WANG Yijia, LI Binzhou, DUAN Tao, ZHANG Dayue, SUN Ruiqi, LIU Baoquan. Research on additive repair special powder and process of 921 steel for marine equipment[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 169-174, 181. doi: 10.7513/j.issn.1004-7638.2025.02.023
Citation: WANG Yijia, LI Binzhou, DUAN Tao, ZHANG Dayue, SUN Ruiqi, LIU Baoquan. Research on additive repair special powder and process of 921 steel for marine equipment[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 169-174, 181. doi: 10.7513/j.issn.1004-7638.2025.02.023

海洋装备用921钢的增材修复专用粉体及工艺研究

doi: 10.7513/j.issn.1004-7638.2025.02.023
详细信息
    作者简介:

    王一甲,1992年出生,男,甘肃武威人,副研究员,博士,主要从事粉末冶金与表面工程研究,E-mail: wangyijia@ansteel.com.cn

  • 中图分类号: TF76

Research on additive repair special powder and process of 921 steel for marine equipment

  • 摘要: 研究了用于921钢材表面开展激光增材制造与修复的专用粉体及配套工艺。通过合理调控合金组分,利用气雾化工艺,获得尺寸均匀的球形雾化粉末;利用激光同轴送粉设备在921钢基材上进行增材制造,优化工艺参数,可获得力学性能匹配良好,无宏观缺陷的熔覆层,实现对921钢基材的增材与修复目的。经测试,修复层力学性能满足相关修复指标要求,化学成分与设定保持一致,无开裂分层等缺陷,具备良好机加工性能,有助于实现大型海洋结构的自主修复,提高服役可靠性。
  • 图  1  气雾化粉末显微形貌

    Figure  1.  Micromorphology of aerosol powder

    图  2  同轴送粉激光熔覆设备

    Figure  2.  Coaxial powder feeding laser cladding equipment

    图  3  熔覆过程中的样品实物

    Figure  3.  The physical sample during the cladding process

    图  4  熔覆块体表面着色探伤

    Figure  4.  Surface dye penetrant testing of cladding block

    图  5  0.2Mo激光熔覆试样

    (a)沿层厚方向切割侵蚀后的宏观照片;(b)微观光镜图片

    Figure  5.  0.2Mo laser cladding sample

    图  6  激光熔覆样品微观组织光镜图片

    (a)0.2Mo;(b)0.3Mo;(c)0.5Mo

    Figure  6.  Optical image of microstructure of laser cladding samples

    图  7  激光熔覆样品微观组织形貌

    (a)0.2Mo;(b)0.3Mo;(c)0.5Mo

    Figure  7.  SEM images of microstructure of laser cladding samples

    图  8  熔覆层与基体界面处熔合区微观形貌

    Figure  8.  Microstructure of the fusion zone at the interface between cladding layer and matrix

    图  9  凸台剪切试验试样与断口形貌

    (a) 剪切试样;(b) 断口形貌

    Figure  9.  Convex shear test specimen and fracture morphology

    图  10  自腐蚀电位曲线

    Figure  10.  Self-etching potential curve

    表  1  粉末的化学成分设计

    Table  1.   Alloying design of powder %

    CSiMnSPMoNiONHFe
    0.03~0.050.3~0.41.3~1.5≤0.004≤0.010.2~0.53.3~3.5≤0.005≤0.006≤0.005余量
    下载: 导出CSV

    表  2  粉末实际化学成分

    Table  2.   Measured chemical compositions of powder %

    样品名 C Si Mn Mo Ni O S P N H Fe
    0.2Mo 0.031 0.37 1.30 0.21 3.27 0.009 0.004 0.004 0.002 余量
    0.3Mo 0.023 0.34 1.29 0.33 3.48 0.012 0.004 0.004 0.002 0.002 余量
    0.5Mo 0.029 0.34 1.31 0.51 3.27 0.011 0.004 0.004 0.002 余量
    下载: 导出CSV

    表  3  激光熔覆工艺参数

    Table  3.   Laser cladding process parameters

    搭接率/%激光功率/kW载粉气流量/(L·min−1保护气流量/(L·min−1激光头行走速率/(m·min−1工作距离/mm
    50~601~310~159~131~513~15
    下载: 导出CSV

    表  4  增材区域力学性能

    Table  4.   Mechanical properties of additive region

    样品名 抗拉强度/MPa 界面结合强度/MPa 延伸率/% 显微硬度(HV) 冲击功
    (−50 ℃)/J
    0.2Mo 623.3 567 25.8 212.2 103
    0.3Mo 678.5 590 20.0 233.1 99
    0.5Mo 750.3 631 18.1 261.2 81
    下载: 导出CSV

    表  5  AWS D3.6M:2017 A标准力学性能规定

    Table  5.   AWS D3.6M:2017 A standard mechanical properties specification

    基体最小抗拉强度/MPa平均冲击功/J最小冲击功/J熔覆层缺陷
    ≥5503423目视及无损测试无缺陷
    下载: 导出CSV
  • [1] KOU R K. Study on high pressure dry underwater laser cladding repair technology and properties of 921A ship steel[D]. Beijing: Beijing Institute of Petrochemical Technology, 2022. (寇荣魁. 921A舰船钢高压干法水下激光熔覆修复工艺及性能研究[D]. 北京:北京石油化工学院, 2022.

    KOU R K. Study on high pressure dry underwater laser cladding repair technology and properties of 921A ship steel[D]. Beijing: Beijing Institute of Petrochemical Technology, 2022.
    [2] FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materilas China, 2014,33(7):385-393. (方志刚, 刘斌, 李国明, 等. 舰船装备材料体系发展与需求分析[J]. 中国材料进展, 2014,33(7):385-393.

    FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materilas China, 2014, 33(7): 385-393.
    [3] HART P, RICHARDSON I M, NIXON J H. The effects of pressure on electrical performance and weld bead geometry in high pressure GMA welding[J]. Welding in the World, 2001, 45: 25-33.
    [4] ZHU D F, ZHU J L, JIAO X D, et al. Microstructure and mechanical properties of 921A steel welding joint by laser-MAG hybrid welding[J]. Welding & Joining, 2022(9): 25-29, 42. (朱东芳, 朱加雷, 焦向东, 等. 921A钢激光-MAG复合焊接头组织及性能[J]. 焊接, 2022(9): 25-29, 42.

    ZHU D F, ZHU J L, JIAO X D, et al. Microstructure and mechanical properties of 921A steel welding joint by laser-MAG hybrid welding[J]. Welding & Joining, 2022(9): 25-29, 42.
    [5] GARASIC I, KRALJ S, KOZUH Z, et al. Analysis of underwater repair technology on the jack-up platform spud can[J]. Brodogradnja, 2010, 61(2): 153-160.
    [6] WOODWARD N, KNAGENHELM H O, BERGE J O, et al. Hyperbaric GMA welding for contingency repair using a fillet welded sleeve at 1 000 m water depth[C]. Proceedings of the International Offshore and Polar Engineering Conference, 2007:3403.
    [7] KARATZAS V A, KOTSIDIS E A, TSOUVALIS N G, et al. Experimental fatigue study of composite patch repaired steel plates with cracks[J]. Applied composite materials, 2015, 22(5): 507-523.
    [8] HAN L G, WU X M, CHEN G D, et al. Local dry underwater welding of 304 stainless steel based on a microdrain cover[J]. Journal of Materials Processing Technology, 2019,268:47-53. doi: 10.1016/j.jmatprotec.2018.12.029
    [9] SHAO C L, XIAO J L, ZHU J L, et al. Research on surface repair technology of laser wire-filled cladding and verification on pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021,29(4):14-18. (邵长磊, 肖镌璐, 朱加雷, 等. 激光填丝熔覆表面修复工艺研究及压力环境验证[J]. 北京石油化工学院学报, 2021,29(4):14-18.

    SHAO C L, XIAO J L, ZHU J L, et al. Research on surface repair technology of laser wire-filled cladding and verification on pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(4): 14-18.
    [10] SUN G, WANG Z, LU Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022(1): 35.
    [11] MAKIHARA Y, MIWA Y, HIROSE N, et al. The application of the welding technique at fillet groove by the YAG-laser repair-welding robot for underwater environment[C]. 12th International Conference on Nuclear Engineering, 2004, 2, 149-155.
    [12] SRIDAR S, ZHAO Y, LI K, et al. Post-heat treatment design for high-strength low-alloy steels processed by laser powder bed fusion[J]. Materials Science & Engineering, A. 2020,788: 139531.
    [13] RODRIGUES T A, DUARTE V R, TOMÁS D, et al. In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM)[J]. Additive Manufacturing, 2020, 34: 101200.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回