中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频等离子体制备球形MoNbTaW难熔高熵合金粉末的研究

赵宇敏 施麒 刘斌斌 谭冲 刘辛 周舸 丁忠耀 秦奉

赵宇敏, 施麒, 刘斌斌, 谭冲, 刘辛, 周舸, 丁忠耀, 秦奉. 射频等离子体制备球形MoNbTaW难熔高熵合金粉末的研究[J]. 钢铁钒钛, 2025, 46(2): 159-168. doi: 10.7513/j.issn.1004-7638.2025.02.022
引用本文: 赵宇敏, 施麒, 刘斌斌, 谭冲, 刘辛, 周舸, 丁忠耀, 秦奉. 射频等离子体制备球形MoNbTaW难熔高熵合金粉末的研究[J]. 钢铁钒钛, 2025, 46(2): 159-168. doi: 10.7513/j.issn.1004-7638.2025.02.022
ZHAO Yumin, SHI Qi, LIU Binbin, TAN Chong, LIU Xin, ZHOU Ge, DING Zhongyao, QIN Feng. Preparation of spherical MoNbTaW refractory high entropy alloy powder by RF plasma[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 159-168. doi: 10.7513/j.issn.1004-7638.2025.02.022
Citation: ZHAO Yumin, SHI Qi, LIU Binbin, TAN Chong, LIU Xin, ZHOU Ge, DING Zhongyao, QIN Feng. Preparation of spherical MoNbTaW refractory high entropy alloy powder by RF plasma[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 159-168. doi: 10.7513/j.issn.1004-7638.2025.02.022

射频等离子体制备球形MoNbTaW难熔高熵合金粉末的研究

doi: 10.7513/j.issn.1004-7638.2025.02.022
基金项目: 新金属材料国家重点实验室开放基金资助项目(2022-Z16); 广东省国际科技合作(2022A0505050025, 2023A0505050122); 广州市重点研发计划(202206040001); 清远市科技计划项目(2021DZX028); 广东省科学院打造综合产业技术创新中心行动资金项目(2022GDASZH-2022010107)。
详细信息
    作者简介:

    赵宇敏,1998年出生,男,汉族,山溪长冶人,硕士研究生,从事金属粉体制备及增材制造研究,E-mail:1252955839@qq.com

    通讯作者:

    施麒,1987年出生,男,汉族,浙江绍兴人,博士,高级工程师,主要从事金属粉体制备及增材制造研究,E-mail:shiqi@gdinm.com

  • 中图分类号: TF12,TG132.3

Preparation of spherical MoNbTaW refractory high entropy alloy powder by RF plasma

  • 摘要: 以喷雾造粒制备的MoNbTaW粉末为原料,通过射频等离子体制备球形MoNbTaW难熔高熵合金粉末,研究了球化功率、载气流量、鞘气成分对粉末球化率的影响。利用扫描电子显微镜、X射线衍射仪、激光粒度分析仪、霍尔流速计和纳米压痕测试系统分别对球化处理前后的粉末形貌、物相、粒度、流动性和显微硬度进行了测试和分析。结果表明: 球磨后粉末未发生合金化,球化后粉末完全转变为体心立方相;等离子体功率由32 kW增大到40 kW,球化率提高,接近100%;载气流量由1 L/min增加到4 L/min,球化粉末表面纳米颗粒减少,更加光滑,球化率接近100%,而继续增加到7 L/min,粉末出现未熔颗粒;在鞘气中添加氢气有助于提高球化率。球化处理后,粉末粒度分布变窄,振实密度由 2.00 g/cm3提高到8.33 g/cm3,松装密度从1.43 g/cm3提升到7.24 g/cm3,霍尔流速(50 g计)由50.8 s提升至8.5 s,显微硬度达到8.57 GPa 。
  • 图  1  原料粉末SEM形貌

    (a)W;(b)Mo;(c)TaH;(d)NbH

    Figure  1.  SEM images of raw powders

    图  2  原料粉末的粒径分布

    Figure  2.  Particle size distribution of raw powders

    图  3  球磨干磨不同时间下粉末SEM形貌

    Figure  3.  SEM morphology of powder under different ball dry grinding time

    (a)2 h;(b)4 h;(c)8 h;(d)12 h

    图  4  喷雾干燥粉末SEM形貌(a)低倍,(b)高倍和EDS面分布

    Figure  4.  SEM images of spray-dried powder (a) low magnification; (b) high magnification

    图  5  不同等离子体功率制备的粉末 SEM形貌(低倍图和高倍图)

    Figure  5.  SEM photos of powders prepared by different plasma powers

    (a)(b) 32 kW; (c)(d)40 kW

    图  6  不同载气流量制备的粉末SEM形貌

    Figure  6.  SEM photos of powders prepared with different carrier gas flow rates

    (a)1 L/min;(b)4 L/min;(c)7 L/min

    图  7  不同鞘气成分制备的粉末 SEM形貌

    Figure  7.  SEM photos of powders prepared with different sheath gas components

    (a)Ar;(b)Ar/He;(c)Ar/H2

    图  8  球化前后粉末XRD谱

    Figure  8.  XRD patterns of powder before and after spheroidization

    图  9  不同尺寸球化粉末的横截面SEM形貌和电子背散射衍射谱

    (a)(b)直径80 μm粉末;(c)(d)直径130 μm粉末

    Figure  9.  SEM and EBSD of cross-section of spheroidized powder with different sizes

    图  10  未完全合金化球化粉末SEM形貌及EDS分析结果

    Figure  10.  SEM image and EDS analysis results of incomplete alloyed spheroidized powder

    图  11  造粒粉末经射频等离子球化合金化的示意

    Figure  11.  Schematic diagram of granulated powder alloyed by RF plasma spheroidization

    图  12  造粒粉末(a)和球化粉末(b)横截面SEM形貌以及球化粉末横截面EDS面分布

    Figure  12.  SEM and EDS of cross section of granulated powder (a)and spheroidized powder (b)

    图  13  合金粉末加载-卸载纳米压痕曲线和压痕照片

    Figure  13.  Nano-indentation curve and indentation photo of loading and unloading of alloy powder

    表  1  射频等离子体球化MoNbTaW难熔高熵合金工艺参数

    Table  1.   Process parameters of radio-frequency plasma spheroidization for MoNbTaW refractory high entropy alloy

    序号功率/kW送粉速率/
    (g·min−1
    载气流量/
    (L·min−1
    鞘气成分鞘气流量/
    (L·min−1
    132104Ar75
    232104Ar/H275/5
    332104Ar/He75/5
    440104Ar/H275/5
    540101Ar/H275/5
    640107Ar/H275/5
    下载: 导出CSV

    表  2  球磨干磨不同时间喷雾造粒粉末的D10D50D90数值和C、O含量

    Table  2.   D10, D50 and D90 values and carbon and oxygen content of spray granulation powder with dry ball milling for 2, 4, 8, 12 h

    球磨时间/hD10/μmD50/μmD90/μmw(C)/%w(O)/%
    21.985.4414.30.220.28
    41.694.5812.70.350.31
    81.152.758.700.440.42
    121.122.8814.60.570.52
    造粒15.834.766.1
    下载: 导出CSV

    表  3  造粒粉末、球化粉末C、O含量

    Table  3.   Carbon and oxygen contents of granulated powder and spheroidized powder %

    粉末种类 C含量 O含量
    W 0.0036 0.016
    Mo 0.0031 0.081
    TaH 0.004 0.038
    NbH 0.016 0.0084
    球磨干磨8 h后 0.44 0.42
    造粒后 2.96 >1.50
    球化后 0.058 0.55
    下载: 导出CSV
  • [1] SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, 2018,33(19):3092-3128. doi: 10.1557/jmr.2018.153
    [2] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014
    [3] QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. (乔娅婷. 粉末冶金法制备难熔高熵合金的工艺及性能研究[D]. 长沙: 国防科技大学, 2020.

    QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020.
    [4] GU P, QI T, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals & Hard Materials, 2022,105:105834.
    [5] SHI Q, ZHANG Y, TAN C, et al. Preparation of Ni–Ti composite powder using radio frequency plasma spheroidization and its laser powder bed fusion densification[J]. Intermetallics, 2021,136:107273. doi: 10.1016/j.intermet.2021.107273
    [6] XIA M, CHEN Y, WANG R, et al. Fabrication of spherical MoNbTaWZr refractory high-entropy powders by spray granulation combined with plasma spheroidization[J]. Journal of Alloys and Compounds, 2023,931:167542. doi: 10.1016/j.jallcom.2022.167542
    [7] XIA M, CHEN Y, CHEN K, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022,917:165501. doi: 10.1016/j.jallcom.2022.165501
    [8] QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019,48(8):2623-2629. (漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J]. 稀有金属材料与工程, 2019,48(8):2623-2629.

    QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2623-2629.
    [9] AVCIOGLU C, OZKAL B. Study on the granulation behavior of TiO2-PVA composite powders prepared via spray drying technique[J]. Journal of the Korean Ceramic Society, 2019,56(5):443-452. doi: 10.4191/kcers.2019.56.5.07
    [10] GRIGORIEV S N, SOE T N, MALAKHINSKY A, et al. Granulation of silicon nitride powders by spray drying: A review[J]. Materials, 2022,15(14):4999. doi: 10.3390/ma15144999
    [11] ZHAO C, MA C Y, WEN Z C, et al. Spheroidization of TC4 (Ti6Al4V) alloy powders by radio frequency plasma processing[J]. Rare Metal Materials and Engineering, 2019(2):94-99.
    [12] YIN Y, ZHAO C, PAN C L, et al. Effect of gas flow on radio-frequency plasma spheroidized GH4169 alloy powder[J]. Journal of Welding Technology, 2019,40(11):100-105,165. (尹燕, 赵超, 潘存良, 等. 气体流量对射频等离子体球化GH4169合金粉末的影响[J]. 焊接学报, 2019,40(11):100-105,165.

    YIN Y, ZHAO C, PAN C L, et al. Effect of gas flow on radio-frequency plasma spheroidized GH4169 alloy powder[J]. Journal of Welding Technology, 2019, 40(11): 100-105,165.
    [13] COLOMBO V, GHEDINI E, MENTRELLI A, et al. Three‐dimensional modeling of thermal plasmas (RF and transferred arc) for the design of sources and industrial processes[M]//Advanced Plasma Technology. Wiley, 2007: 75-97.
    [14] CHEN Y L, HU Y H, HSIEH C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system[J]. Journal of Alloys and Compounds, 2009,481(1-2):768-775. doi: 10.1016/j.jallcom.2009.03.087
    [15] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992,7(6):1564-1583. doi: 10.1557/JMR.1992.1564
    [16] QIAN L, LI M, ZHOU Z, et al. Comparison of nano-indentation hardness to microhardness[J]. Surface and Coatings Technology, 2005,195(2-3):264-271. doi: 10.1016/j.surfcoat.2004.07.108
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回