Preparation of spherical MoNbTaW refractory high entropy alloy powder by RF plasma
-
摘要: 以喷雾造粒制备的MoNbTaW粉末为原料,通过射频等离子体制备球形MoNbTaW难熔高熵合金粉末,研究了球化功率、载气流量、鞘气成分对粉末球化率的影响。利用扫描电子显微镜、X射线衍射仪、激光粒度分析仪、霍尔流速计和纳米压痕测试系统分别对球化处理前后的粉末形貌、物相、粒度、流动性和显微硬度进行了测试和分析。结果表明: 球磨后粉末未发生合金化,球化后粉末完全转变为体心立方相;等离子体功率由32 kW增大到40 kW,球化率提高,接近100%;载气流量由1 L/min增加到4 L/min,球化粉末表面纳米颗粒减少,更加光滑,球化率接近100%,而继续增加到7 L/min,粉末出现未熔颗粒;在鞘气中添加氢气有助于提高球化率。球化处理后,粉末粒度分布变窄,振实密度由 2.00 g/cm3提高到8.33 g/cm3,松装密度从1.43 g/cm3提升到7.24 g/cm3,霍尔流速(50 g计)由50.8 s提升至8.5 s,显微硬度达到8.57 GPa 。
-
关键词:
- MoNbTaW难熔高熵合金 /
- 球磨 /
- 喷雾造粒 /
- 射频等离子体 /
- 球化率
Abstract: MoNbTaW powder prepared by spray granulation was used as raw material to prepare spherical refractory high entropy MoNbTaW alloy powder by RF plasma spheroidization. The effects of spheroidizing power, carrier gas flow and sheath gas composition on the spheroidization rate of powder were studied. The morphology, phase, particle size, fluidity and microhardness of the powder before and after spheroidization were measured and analyzed by scanning electron microscope, X-ray diffractometer, laser particle size analyzer, Hall velocity meter and nanoindentation test system. The results show that the powder is not alloyed after ball milling, and the powder is completely transformed into body-centered cubic phase after spheroidization. When the plasma power was increased from 32 kW to 40 kW, the nodulization rate increased and the nodulization rate was close to 100%. When the carrier gas flow rate was increased from 1 L/min to 4 L/min, the surface nanoparticles of the nodulization powder decreased and became smoother, and the nodulization rate was close to 100%. After the carrier gas flow rate was further increase to 7 L/min, the powder appeared unmelted particles. Adding hydrogen in the sheath gas was helpful to improve the spheroidization rate. After spheroidization, the particle size distribution narrowed. As a result, the vibration density was increased from 2.00 g/cm3 to 8.33 g/cm3, the loose density increased from 1.43 g/cm3 to 7.24 g/cm3, and the Hall flow rate increased from 50.8 s/50 g to 8.5 s/50 g. The resulted microhardness reached up to 8.57 GPa. -
表 1 射频等离子体球化MoNbTaW难熔高熵合金工艺参数
Table 1. Process parameters of radio-frequency plasma spheroidization for MoNbTaW refractory high entropy alloy
序号 功率/kW 送粉速率/
(g·min−1)载气流量/
(L·min−1)鞘气成分 鞘气流量/
(L·min−1)1 32 10 4 Ar 75 2 32 10 4 Ar/H2 75/5 3 32 10 4 Ar/He 75/5 4 40 10 4 Ar/H2 75/5 5 40 10 1 Ar/H2 75/5 6 40 10 7 Ar/H2 75/5 表 2 球磨干磨不同时间喷雾造粒粉末的D10、D50、D90数值和C、O含量
Table 2. D10, D50 and D90 values and carbon and oxygen content of spray granulation powder with dry ball milling for 2, 4, 8, 12 h
球磨时间/h D10/μm D50/μm D90/μm w(C)/% w(O)/% 2 1.98 5.44 14.3 0.22 0.28 4 1.69 4.58 12.7 0.35 0.31 8 1.15 2.75 8.70 0.44 0.42 12 1.12 2.88 14.6 0.57 0.52 造粒 15.8 34.7 66.1 表 3 造粒粉末、球化粉末C、O含量
Table 3. Carbon and oxygen contents of granulated powder and spheroidized powder
% 粉末种类 C含量 O含量 W 0.0036 0.016 Mo 0.0031 0.081 TaH 0.004 0.038 NbH 0.016 0.0084 球磨干磨8 h后 0.44 0.42 造粒后 2.96 >1.50 球化后 0.058 0.55 -
[1] SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, 2018,33(19):3092-3128. doi: 10.1557/jmr.2018.153 [2] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014 [3] QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. (乔娅婷. 粉末冶金法制备难熔高熵合金的工艺及性能研究[D]. 长沙: 国防科技大学, 2020.QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. [4] GU P, QI T, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals & Hard Materials, 2022,105:105834. [5] SHI Q, ZHANG Y, TAN C, et al. Preparation of Ni–Ti composite powder using radio frequency plasma spheroidization and its laser powder bed fusion densification[J]. Intermetallics, 2021,136:107273. doi: 10.1016/j.intermet.2021.107273 [6] XIA M, CHEN Y, WANG R, et al. Fabrication of spherical MoNbTaWZr refractory high-entropy powders by spray granulation combined with plasma spheroidization[J]. Journal of Alloys and Compounds, 2023,931:167542. doi: 10.1016/j.jallcom.2022.167542 [7] XIA M, CHEN Y, CHEN K, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022,917:165501. doi: 10.1016/j.jallcom.2022.165501 [8] QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019,48(8):2623-2629. (漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J]. 稀有金属材料与工程, 2019,48(8):2623-2629.QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2623-2629. [9] AVCIOGLU C, OZKAL B. Study on the granulation behavior of TiO2-PVA composite powders prepared via spray drying technique[J]. Journal of the Korean Ceramic Society, 2019,56(5):443-452. doi: 10.4191/kcers.2019.56.5.07 [10] GRIGORIEV S N, SOE T N, MALAKHINSKY A, et al. Granulation of silicon nitride powders by spray drying: A review[J]. Materials, 2022,15(14):4999. doi: 10.3390/ma15144999 [11] ZHAO C, MA C Y, WEN Z C, et al. Spheroidization of TC4 (Ti6Al4V) alloy powders by radio frequency plasma processing[J]. Rare Metal Materials and Engineering, 2019(2):94-99. [12] YIN Y, ZHAO C, PAN C L, et al. Effect of gas flow on radio-frequency plasma spheroidized GH4169 alloy powder[J]. Journal of Welding Technology, 2019,40(11):100-105,165. (尹燕, 赵超, 潘存良, 等. 气体流量对射频等离子体球化GH4169合金粉末的影响[J]. 焊接学报, 2019,40(11):100-105,165.YIN Y, ZHAO C, PAN C L, et al. Effect of gas flow on radio-frequency plasma spheroidized GH4169 alloy powder[J]. Journal of Welding Technology, 2019, 40(11): 100-105,165. [13] COLOMBO V, GHEDINI E, MENTRELLI A, et al. Three‐dimensional modeling of thermal plasmas (RF and transferred arc) for the design of sources and industrial processes[M]//Advanced Plasma Technology. Wiley, 2007: 75-97. [14] CHEN Y L, HU Y H, HSIEH C A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system[J]. Journal of Alloys and Compounds, 2009,481(1-2):768-775. doi: 10.1016/j.jallcom.2009.03.087 [15] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992,7(6):1564-1583. doi: 10.1557/JMR.1992.1564 [16] QIAN L, LI M, ZHOU Z, et al. Comparison of nano-indentation hardness to microhardness[J]. Surface and Coatings Technology, 2005,195(2-3):264-271. doi: 10.1016/j.surfcoat.2004.07.108 -