3D cellular automaton simulation of the dynamic recrystallization microstructure evolution for a nickel-based superalloy
-
摘要: 镍基高温合金在热加工过程中易发生动态再结晶组织演化行为,可以有效细化合金凝固过程形成的粗大柱状晶组织,是调控高温合金锻件质量的理论依据。采用C276镍基高温合金开展了高温热压缩试验,研究了热压缩流变应力曲线特征和微观组织演化规律,在此基础上,开发了镍基高温合金热变形动态再结晶的三维元胞自动机模型。结果表明,镍基高温合金的动态再结晶对变形温度、变形量及变形速率极为敏感,三维元胞自动机模型可以表征动态再结晶形核和晶粒生长的三维空间微观组织拓扑结构演化特征,并计算动态再结晶过程中的加工硬化、动态再结晶软化等力学响应特性。再结晶组织的三维空间组织拓扑结构分析较二维空间表现出一定优势。该模型有助于进一步理解镍基高温合金动态再结晶演化行为,指导热加工过程微观组织的精确调控。Abstract: Dynamic recrystallization usually occurs on nickel-based superalloys during hot deformation, which can refine the initial coarse solidification columnar grains and be served as the theoretical base for controlling the quality of superalloys. Hot deformation tests were conducted on a nickel-based C276 superalloy in this work. The flow curve characterization and microstructural evolution were investigated. Then a 3D cellular automaton model was developed to simulate the dynamic recrystallization of nickel-based superalloys. The results indicate the dynamic recrystallization of nickel-based superalloys is sensitive to the deformation temperature, deformation degree and strain rate. The developed 3D cellular automaton model can simulate the topological evolution of recrystallization nucleation and grain growth in 3D space. And it can also capture the stress response caused by work hardening and dynamic recrystallization softening. The topological microstructure analysis in 3D shows it is more superior as compared to 2D section. The developed model is supposed to be beneficial for understanding the dynamic recrystallization of nickel-based superalloys and supervising the microstructure control during hot working process.
-
表 1 三维元胞自动机模型中所采用的材料参数值
Table 1. Values of parameters in the developed 3D cellular automaton model
参数 Tm/℃ Qa/(kJ·mol−1) Qb/(kJ·mol−1) μ0/GPa b/nm υ k/(J·K−1) R/(J·mol−1·K−1) k1 k2 数值 1325 475 175 78.57 0.25 0.3 1.381×10−23 8.314 $1.058 \times {10^9}{Z^{0.016}}$ $ 6.003 \times {10^3}{Z^{ - 0.12}}$ -
[1] JIANG S C. Hot compression deformation behaviors and microstructure evolution of GH4169 alloy[J]. Iron Steel Vanadium Titanium, 2018,39(2):146-152. (蒋世川. GH4169高温合金热变形行为及组织演变[J]. 钢铁钒钛, 2018,39(2):146-152. doi: 10.7513/j.issn.1004-7638.2018.02.025JIANG S C. Hot compression deformation behaviors and microstructure evolution of GH4169 alloy[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 146-152. doi: 10.7513/j.issn.1004-7638.2018.02.025 [2] CHEN F, REN F C. Dynamic recrystallization modeling and simulation of Inconel 718 nickel-based superalloy[J]. Journal of Netshape Forming Engineering, 2021,13(1):61-65. (陈飞, 任发才. Inconel 718镍基高温合金热加工动态再结晶建模与计算[J]. 精密成形工程, 2021,13(1):61-65.CHEN F, REN F C. Dynamic recrystallization modeling and simulation of Inconel 718 nickel-based superalloy[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 61-65. [3] NING Y Q, YAO Z K, FU M W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism[J]. Materials Science and Engineering: A, 2011,528:8065-8070. doi: 10.1016/j.msea.2011.07.053 [4] NING Y Q, FU M W, YAO W. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application[J]. Materials Science and Engineering: A, 2012,539:101-106. doi: 10.1016/j.msea.2012.01.065 [5] LIN Y C, YANG H, HE D G, et al. A physically-based model considering dislocation-solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures[J]. Materials and Design, 2019,183:108122. doi: 10.1016/j.matdes.2019.108122 [6] WEN D X, LIN Y C, LI X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase[J]. Journal of Alloys and Compounds, 2018,764:1008-1020. doi: 10.1016/j.jallcom.2018.06.146 [7] LIU P, ZHANG R, YUAN Y, et al. Hot deformation behavior and workability of a Ni–Co based superalloy[J]. Journal of Alloys and Compounds, 2020,831:154618. doi: 10.1016/j.jallcom.2020.154618 [8] WANG M T, ZONG Y P, WANG G. Simulation of grain growth of AZ31 Mg alloy during recrystallization by phase field model[J]. The Chinese Journal of Nonferrous Metals, 2009,19(9):1555-1562. (王明涛, 宗亚平, 王刚. 相场法模拟AZ31镁合金再结晶晶粒长大[J]. 中国有色金属学报, 2009,19(9):1555-1562. doi: 10.3321/j.issn:1004-0609.2009.09.004WANG M T, ZONG Y P, WANG G. Simulation of grain growth of AZ31 Mg alloy during recrystallization by phase field model[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(9): 1555-1562. doi: 10.3321/j.issn:1004-0609.2009.09.004 [9] CHUN Y B, SEMIATIN S L, HWANG S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold rolled, commercial-purity titanium[J]. Acta Materialia, 2006,54:3673-3689. doi: 10.1016/j.actamat.2006.03.055 [10] GOETZ R L, SEETHARAMAN V. Modeling dynamic recrystallization using cellular automata[J]. Scripta Materialia, 1998,38(3):405-413. doi: 10.1016/S1359-6462(97)00500-9 [11] DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001,49(16):3163-3175. doi: 10.1016/S1359-6454(01)00233-6 [12] CHU Z B, ZHANG D, JIANG L Y, et al. Microstructure model of AZ31 magnesium alloy based on cellular automata[J]. Rare Metal Materials and Engineering, 2018,47(3):884-894. (楚志兵, 张铎, 江连运, 等. 基于元胞自动机AZ31镁合金微观组织模型[J]. 稀有金属材料与工程, 2018,47(3):884-894.CHU Z B, ZHANG D, JIANG L Y, et al. Microstructure model of AZ31 magnesium alloy based on cellular automata[J]. Rare Metal Materials and Engineering, 2018, 47(3): 884-894. [13] CHEN F, ZHU H J, LI J H, et al. Macro and micro simulation of microstructure evolution in discontinuous thermal deformation of large forging parts[J]. Chinese Journal of Plasticity Engineering, 2020,27(5):41-52. (陈飞, 朱华佳, 李佳航, 等. 大锻件非连续热变形组织演变宏微观模拟[J]. 塑性工程学报, 2020,27(5):41-52. doi: 10.3969/j.issn.1007-2012.2020.05.005CHEN F, ZHU H J, LI J H, et al. Macro and micro simulation of microstructure evolution in discontinuous thermal deformation of large forging parts[J]. Chinese Journal of Plasticity Engineering, 2020, 27(5): 41-52. doi: 10.3969/j.issn.1007-2012.2020.05.005 [14] ZHU N Y, XIA Q X, CHENG X Q. Dynamic recrystallization microstructure evolution of Haynes230 alloy based on cellular automata[J]. Journal of Central South University (Science and Technology), 2017,48(9):2316-2323. (朱宁远, 夏琴香, 程秀全. 基于元胞自动机的Haynes230动态再结晶组织演变[J]. 中南大学学报(自然科学版), 2017,48(9):2316-2323.ZHU N Y, XIA Q X, CHENG X Q. Dynamic recrystallization microstructure evolution of Haynes230 alloy based on cellular automata[J]. Journal of Central South University (Science and Technology), 2017, 48(9): 2316-2323. [15] MECKING H, KOCKS U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica, 1981,29(11):1865-1875. doi: 10.1016/0001-6160(81)90112-7 [16] JIN Z, CUI Z. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method[J]. Materials Science and Engineering: A, 2010,527:3111-3119. doi: 10.1016/j.msea.2010.01.062 [17] RIEDEL H, SVOBODA J. A model for strain hardening, recovery, recrystallization and grain growth with applications to forming processes of nickel base alloys[J]. Materials Science and Engineering: A, 2016,665:175-183. doi: 10.1016/j.msea.2016.04.015 [18] ZHANG C, TANG X L, ZHANG L W, et al. Cellular automaton modelling of dynamic recrystallization of Ni-Cr-Mo-based C276 superalloy during hot compression[J]. Journal of Materials Research, 2019,34(18):3093-3103. doi: 10.1557/jmr.2019.218 -