中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢-碳协同还原钒钛磁铁矿试验研究

张双武 邢相栋 赵贵清 代文林 郭鹏辉

张双武, 邢相栋, 赵贵清, 代文林, 郭鹏辉. 氢-碳协同还原钒钛磁铁矿试验研究[J]. 钢铁钒钛, 2025, 46(2): 118-126. doi: 10.7513/j.issn.1004-7638.2025.02.017
引用本文: 张双武, 邢相栋, 赵贵清, 代文林, 郭鹏辉. 氢-碳协同还原钒钛磁铁矿试验研究[J]. 钢铁钒钛, 2025, 46(2): 118-126. doi: 10.7513/j.issn.1004-7638.2025.02.017
ZHANG Shuangwu, XING Xiangdong, ZHAO Guiqing, DAI Wenlin, GUO Penghui. Experimental study on hydrogen-carbon synergistic reduction of vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 118-126. doi: 10.7513/j.issn.1004-7638.2025.02.017
Citation: ZHANG Shuangwu, XING Xiangdong, ZHAO Guiqing, DAI Wenlin, GUO Penghui. Experimental study on hydrogen-carbon synergistic reduction of vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 118-126. doi: 10.7513/j.issn.1004-7638.2025.02.017

氢-碳协同还原钒钛磁铁矿试验研究

doi: 10.7513/j.issn.1004-7638.2025.02.017
基金项目: 国家自然科学基金项目(52174325);陕西省创新能力支撑计划(2023-CX-TD-53)。
详细信息
    作者简介:

    张双武,1971年出生,男,河南通许人,高级工程师,主要从事冶金新技术、循环经济新技术等领域的研究工作,E-mail:17693110936@163.com

    通讯作者:

    邢相栋,1983年出生,男,山东日照人,教授,主要从事高炉炼铁相关研究工作,E-mail:xaxxd@xauat.edu.cn

  • 中图分类号: TF556

Experimental study on hydrogen-carbon synergistic reduction of vanadium-titanium magnetite

  • 摘要: 采用钒钛磁铁矿精矿粉内配兰炭骨料与氢气进行协同还原的方式,探究了骨料量和还原温度对钒钛磁铁矿气基还原金属化率以及抗压强度的影响,并运用X射线衍射(XRD)、扫描电镜(SEM)以及X射线计算机断层扫描(XCT)方法分析了还原产物物相、微观形貌以及孔隙结构变化。结果表明,在氢气气氛下内配兰炭还原可显著提升钒钛磁铁矿的还原效果;在氮气气氛下,兰炭并未将钒钛磁铁矿还原。内配兰炭的钒钛磁铁矿还原后,金属铁的XRD衍射峰增强,而碳的衍射峰降低。在内配兰炭还原后的试样表面,兰炭颗粒保存较好且附近孔隙较多,内嵌兰炭提高了试样内部的孔隙数量并增大了孔径,促进还原气体深入试样参与还原,从而提高了钒钛磁铁矿还原效果。
  • 图  1  钒钛磁铁精矿XRD谱图

    Figure  1.  XRD analysis of vanadium-titanium magnetite

    图  2  竖炉设备示意

    Figure  2.  Schematic diagram of shaft furnace equipment

    图  3  骨料量对钒钛磁铁矿金属化率的影响

    Figure  3.  Effect of aggregate quantity on metallization rate of vanadium-titanium magnetite

    图  4  骨料量对钒钛磁铁矿抗压强度的影响

    Figure  4.  Effect of aggregate quantity on compressive strength of vanadium-titanium magnetite

    图  5  还原温度对钒钛磁铁矿金属化率的影响

    Figure  5.  Effect of reduction temperature on metallization of vanadium-titanium magnetite

    图  6  还原温度对钒钛磁铁矿抗压强度的影响

    Figure  6.  Effect of reduction temperature on compressive strength of vanadium-titanium magnetite

    图  7  还原产物的XRD图谱

    (a)H2;(b)N2

    Figure  7.  XRD patterns of reduction products

    图  8  钒钛磁铁矿H2气氛还原的SEM图像

    (a)950 ℃;(b)1 000 ℃;(c)1 050 ℃;(d)1 100 ℃;(e)1 150 ℃

    Figure  8.  SEM images of vanadium-titanium magnetite reduced in H2 atmosphere

    图  9  钒钛磁铁矿H2气氛还原后的EDS图像

    (a)点1;(b)点2;(c)点3

    Figure  9.  EDS images of vanadium-titanium magnetite after reduction in H2 atmosphere

    图  10  钒钛磁铁矿H2还原的图谱扫描分析

    Figure  10.  EDS maps of vanadium-titanium magnetite reduced in H2 atmosphere

    图  11  钒钛磁铁矿N2气氛还原的SEM形貌

    (a)950 ℃;(b)1 000 ℃;(c)1 050 ℃;(d)1 100 ℃;(e)1 150 ℃.

    Figure  11.  SEM images of vanadium-titanium magnetite reduced in N2 atmosphere

    图  12  钒钛磁铁矿N2气氛还原的EDS图像

    Figure  12.  EDS images of vanadium-titanium magnetite reduced in N2 atmosphere

    (a)SEM图像; (b)点4; (c)点5; (d)点6

    图  13  钒钛磁铁矿N2还原的图谱扫描分析

    Figure  13.  EDS maps of vanadium-titanium magnetite reduced in N2 atmosphere

    图  14  还原后样品的XCT图像

    (a1)~(a3)H2气氛0骨料;(b1)~(b3)H2气氛6%骨料;(c1)~(c3)N2气氛0骨料;(d1)~(d3)N2气氛6%骨料

    Figure  14.  XCT image of the reduced sample

    图  15  内嵌骨料还原后的孔径等效直径分布频率

    Figure  15.  Frequency diagram of pore size equivalent diameter distribution after embedded aggregate reduction

    图  16  钒钛磁铁矿氢-碳协同还原机理

    Figure  16.  Mechanism diagram of hydrogen-carbon synergistic reduction of vanadium-titanium magnetite

    表  1  钒钛磁铁精矿化学成分

    Table  1.   The composition of vanadium-titanium magnetite concentrates %

    TFeFeOTiO2V2O5SiO2Al2O3CaOMgOCr2O3
    55.0032.139.500.734.204.100.843.300.68
    下载: 导出CSV
  • [1] LUO L G, PANG J M, LI X, et al. Experiment on separation of iron and titanium by reduction-grinding process of vanadium titanomagnetite[J]. Iron and Steel, 2024,59(8):13-18, 49. (罗林根, 庞建明, 李新, 等. 钒钛磁铁矿还原-磨选工艺分离铁钛试验[J]. 钢铁, 2024,59(8):13-18, 49.

    LUO L G, PANG J M, LI X, et al. Experiment on separation of iron and titanium by reduction-grinding process of vanadium titanomagnetite[J]. Iron and Steel, 2024, 59(8): 13-18, 49.
    [2] WANG X Y, ZHAO H Q, QI Y H, et al. Research and development of direct reduction of vanadium-titanium magnetite[J]. China Metallurgy, 2024,34(2):1-8, 51. (王新宇, 赵海泉, 齐渊洪, 等. 钒钛磁铁矿直接还原的研究与发展[J]. 中国冶金, 2024,34(2):1-8, 51.

    WANG X Y, ZHAO H Q, QI Y H, et al. Research and development of direct reduction of vanadium-titanium magnetite[J]. China Metallurgy, 2024, 34(2): 1-8, 51.
    [3] YANG S P, HE S H, WANG M, et al. Optimization experiment of coal-based reduction smelting and vanadium recovery of vanadium-titanium magnetite[J]. Chinese Journal of Rare Metals, 2024,48(7):989-998. (杨双平, 何少红, 王苗, 等. 钒钛磁铁矿煤基还原熔分及钒回收率优化试验[J]. 稀有金属, 2024,48(7):989-998.

    YANG S P, HE S H, WANG M, et al. Optimization experiment of coal-based reduction smelting and vanadium recovery of vanadium-titanium magnetite[J]. Chinese Journal of Rare Metals, 2024, 48(7): 989-998.
    [4] YUAN Y P, ZHOU Y Q, HONG L K, et al. Experimental study on reduction of vanadium-titanium magnetite with hydrogen and biomass[J]. Iron Steel Vanadium Titanium, 2022,43(1):113-118. (袁艺旁, 周玉青, 洪陆阔, 等. 氢气协同生物质还原钒钛磁铁矿试验研究[J]. 钢铁钒钛, 2022,43(1):113-118. doi: 10.7513/j.issn.1004-7638.2022.01.017

    YUAN Y P, ZHOU Y Q, HONG L K, et al. Experimental study on reduction of vanadium-titanium magnetite with hydrogen and biomass[J]. Iron Steel Vanadium Titanium, 2022, 43(1): 113-118. doi: 10.7513/j.issn.1004-7638.2022.01.017
    [5] HOU P, YU W Z, BAI C G, et al. Viscous flow properties and influencing factors of vanadium titanium magnetite smelting iron[J]. Iron and Steel, 2022,57(1):57-65. (侯飘, 余文轴, 白晨光, 等. 钒钛磁铁矿冶炼铁水的黏流性能及其影响因素[J]. 钢铁, 2022,57(1):57-65.

    HOU P, YU W Z, BAI C G, et al. Viscous flow properties and influencing factors of vanadium titanium magnetite smelting iron[J]. Iron and Steel, 2022, 57(1): 57-65.
    [6] TONG S, AI L Q, HONG L K, et al. Metallurgical effect of microwave-hydrogen synergistic reduction for vanadium-titanium magnetite concentrate[J]. China Metallurgy, 2023,33(11):48-54. (佟帅, 艾立群, 洪陆阔, 等. 微波-氢气协同还原钒钛磁铁矿精矿的冶金效果[J]. 中国冶金, 2023,33(11):48-54.

    TONG S, AI L Q, HONG L K, et al. Metallurgical effect of microwave-hydrogen synergistic reduction for vanadium-titanium magnetite concentrate[J]. China Metallurgy, 2023, 33(11): 48-54.
    [7] JI C Q, YANG Y H, XU L, et al. Comprehensive utilization of associated sulfur resources of Panxi vanadium titanium magnetite and its significance for low-carbon development[J]. Multipurpose Utilization of Mineral Resources, 2023(4):19-26. (冀成庆, 杨耀辉, 徐璐, 等. 攀西钒钛磁铁矿伴生硫资源综合利用及其低碳发展意义[J]. 矿产综合利用, 2023(4):19-26. doi: 10.3969/j.issn.1000-6532.2023.04.003

    JI C Q, YANG Y H, XU L, et al. Comprehensive utilization of associated sulfur resources of Panxi vanadium titanium magnetite and its significance for low-carbon development[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 19-26. doi: 10.3969/j.issn.1000-6532.2023.04.003
    [8] CHU M S, TANG Y, LIU Z G, et al. Present situation and progress of comprehensive utilization for high chromium vanadium bearing titanomagnetite[J]. Journal of Iron and Steel Research, 2017,29(5):335-344. (储满生, 唐珏, 柳政根, 等. 高铬型钒钛磁铁矿综合利用现状及进展[J]. 钢铁研究学报, 2017,29(5):335-344.

    CHU M S, TANG Y, LIU Z G, et al. Present situation and progress of comprehensive utilization for high chromium vanadium bearing titanomagnetite[J]. Journal of Iron and Steel Research, 2017, 29(5): 335-344.
    [9] HU T, LÜ X W, BAI C G, et al. Reduction behavior of Panzhihua titanomagnetite concentrates with coal[J]. Metallurgical and Materials Transactions B, 2013,44(2):252-260. doi: 10.1007/s11663-012-9783-7
    [10] HUANG Z C, JIANG X, YI L Y, et al. Effects of biomass on reduction of vanadium bearing titanomagnetite and process enhancement[J]. Iron and Steel, 2021,56(1):12-20. (黄柱成, 姜雄, 易凌云, 等. 生物质对钒钛磁铁矿还原行为影响及过程强化[J]. 钢铁, 2021,56(1):12-20.

    HUANG Z C, JIANG X, YI L Y, et al. Effects of biomass on reduction of vanadium bearing titanomagnetite and process enhancement[J]. Iron and Steel, 2021, 56(1): 12-20.
    [11] ZHAO T, YU S W, WEN J, et al. Study on microwave enhanced direct reduction process of vanadium titanomagnetite[J]. Iron Steel Vanadium Titanium, 2021,42(4):105-110. (赵涛, 余少武, 温靖, 等. 微波强化钒钛磁铁矿直接还原过程研究[J]. 钢铁钒钛, 2021,42(4):105-110. doi: 10.7513/j.issn.1004-7638.2021.04.018

    ZHAO T, YU S W, WEN J, et al. Study on microwave enhanced direct reduction process of vanadium titanomagnetite[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 105-110. doi: 10.7513/j.issn.1004-7638.2021.04.018
    [12] LÜ Q, TANG Q, SUN Y Q, et al. Relationship between blast furnace slag properties of vanadiumtitano-magnetite and reduction of vanadium oxide[J]. Iron Steel Vanadium Titanium, 2016,37(6):1-4. (吕庆, 唐琦, 孙艳芹, 等. 钒钛磁铁矿高炉冶炼的炉渣性质与钒氧化物还原关系[J]. 钢铁钒钛, 2016,37(6):1-4. doi: 10.7513/j.issn.1004-7638.2016.06.001

    LÜ Q, TANG Q, SUN Y Q, et al. Relationship between blast furnace slag properties of vanadiumtitano-magnetite and reduction of vanadium oxide[J]. Iron Steel Vanadium Titanium, 2016, 37(6): 1-4. doi: 10.7513/j.issn.1004-7638.2016.06.001
    [13] WANG J L, DAI X, ZHANG W, et al. Advances of non-blast furnace flash iron making researches[J]. Iron and Steel, 2020,55(4):100-105. (汪金良, 戴曦, 张伟, 等. 非高炉闪速炼铁研究进展[J]. 钢铁, 2020,55(4):100-105.

    WANG J L, DAI X, ZHANG W, et al. Advances of non-blast furnace flash iron making researches[J]. Iron and Steel, 2020, 55(4): 100-105.
    [14] ZHANG F, ZHAO P C, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. Int J Hydrogen Energy 2016, 41: 14535-14552.
    [15] NIGEL P B, JAMES J B. Hydrogen for a net-zero carbon world[J]. Engineering, 2023,29(10):8-10.
    [16] PAN C C, PANG J M. Development trace and application prospect of hydrogen metallurgy technology[J]. China Metallurgy, 2021,31(9):73-77. (潘聪超, 庞建明. 氢冶金技术的发展溯源与应用前景[J]. 中国冶金, 2021,31(9):73-77.

    PAN C C, PANG J M. Development trace and application prospect of hydrogen metallurgy technology[J]. China Metallurgy, 2021, 31(9): 73-77.
    [17] GAO H, GUO L, GAO J T, et al. In-situ research on the H2 based reduction process of high-phosphorous iron ore[J]. Chinese Journal of Engineering, 2015,37(10):1284-1290. (高晗, 郭磊, 高金涛, 等. 高磷矿氢气还原过程的原位研究[J]. 工程科学学报, 2015,37(10):1284-1290.

    GAO H, GUO L, GAO J T, et al. In-situ research on the H2 based reduction process of high-phosphorous iron ore[J]. Chinese Journal of Engineering, 2015, 37(10): 1284-1290.
    [18] ZANG F L, HUANG R, XU B J, et al. Reduction of Guizhou oolite hematite by hydrogen[J]. Journal of Iron and Steel Research, 2016,28(11):23-28. (张伏龙, 黄润, 徐本军, 等. 贵州鲕状赤铁矿的氢气还原行为[J]. 钢铁研究学报, 2016,28(11):23-28.

    ZANG F L, HUANG R, XU B J, et al. Reduction of Guizhou oolite hematite by hydrogen[J]. Journal of Iron and Steel Research, 2016, 28(11): 23-28.
    [19] LI W, FU G Q, CHU M S, et al. Influence of Cr2O3 addition on the gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet with simulated shaft furnace gases[J]. ISIJ International, 2018,58(4):604-611. doi: 10.2355/isijinternational.ISIJINT-2017-544
    [20] YU H, ZHOU J C, LI X P, et al. Reconstruction optimization of gas based shaftfurnace direct reduction ironmaking process[J]. China Metallurgy, 2021,31(1):31-35. (于恒, 周继程, 郦秀萍, 等. 气基竖炉直接还原炼铁流程重构优化[J]. 中国冶金, 2021,31(1):31-35.

    YU H, ZHOU J C, LI X P, et al. Reconstruction optimization of gas based shaftfurnace direct reduction ironmaking process[J]. China Metallurgy, 2021, 31(1): 31-35.
    [21] SUN H Y, ZHU Q S, LI H Z. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed[J]. The Chinese Journal of Process Engineering, 2018,18(6):1146-1159. (孙昊延, 朱庆山, 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018,18(6):1146-1159. doi: 10.12034/j.issn.1009-606X.218275

    SUN H Y, ZHU Q S, LI H Z. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1146-1159. doi: 10.12034/j.issn.1009-606X.218275
    [22] ZENG R Q, WANG N, LI W, et al. Influence of SiO2 on the gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet by hydrogen-rich gases[J]. Powder Technology, 2021,386:90-97. doi: 10.1016/j.powtec.2021.03.019
    [23] WANG Z H, CHEN S Y, CHEN L, et al. Enhancing iron and titanium recovery efficiency via coal-based direct reduction of vanadium-titanium magnetite raw ore[J/OL]. Transactions of Nonferrous Metals Society of China, 1-32 [2024-10-14].
    [24] GAO Y C, HAO S J, JIANG W F, et al. Non-isothermal reduction kinetics of carbon-coated vanadium-titanium magnetite powder[J]. Iron Steel Vanadium Titanium, 2023,44(1):111-118. (高一策, 郝素菊, 蒋武锋, 等. 碳包覆钒钛磁铁矿粉非等温还原动力学[J]. 钢铁钒钛, 2023,44(1):111-118. doi: 10.7513/j.issn.1004-7638.2023.01.019

    GAO Y C, HAO S J, JIANG W F, et al. Non-isothermal reduction kinetics of carbon-coated vanadium-titanium magnetite powder[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 111-118. doi: 10.7513/j.issn.1004-7638.2023.01.019
    [25] ZHENG P. Research on direct reduction of vanadium titanium magnetite[J]. Non-ferrous Mining and Metallurgy, 2018,34(2):35-38. (郑鹏. 钒钛磁铁矿直接还原特性的研究[J]. 有色矿冶, 2018,34(2):35-38. doi: 10.3969/j.issn.1007-967X.2018.02.009

    ZHENG P. Research on direct reduction of vanadium titanium magnetite[J]. Non-ferrous Mining and Metallurgy, 2018, 34(2): 35-38. doi: 10.3969/j.issn.1007-967X.2018.02.009
    [26] SHI X F, XU H J, ZHANG Y Y, et al. The experimental study on direct reduction of shaft furnace based gas of vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2015,36(1):52. (师学峰, 徐红军, 张颖异, 等. 钒钛磁铁矿气基竖炉直接还原试验研究[J]. 钢铁钒钛, 2015,36(1):52.

    SHI X F, XU H J, ZHANG Y Y, et al. The experimental study on direct reduction of shaft furnace based gas of vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 52.
    [27] DAI W L, XING X D, MIAO H S, et al. Experiment on gas-based reduction of aggregate in vanadium-titanium magnetite ore[J]. China Metallurgy, 2024,34(5):37-44. (代文林, 邢相栋, 苗红生, 等. 钒钛磁铁矿内配骨料气基还原试验[J]. 中国冶金, 2024,34(5):37-44.

    DAI W L, XING X D, MIAO H S, et al. Experiment on gas-based reduction of aggregate in vanadium-titanium magnetite ore[J]. China Metallurgy, 2024, 34(5): 37-44.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回