中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛磁铁矿金属化球团电炉熔分钒钛竞争还原机理

高建军 迪林 王彬 于樾 齐渊洪

高建军, 迪林, 王彬, 于樾, 齐渊洪. 钒钛磁铁矿金属化球团电炉熔分钒钛竞争还原机理[J]. 钢铁钒钛, 2025, 46(2): 112-117. doi: 10.7513/j.issn.1004-7638.2025.02.016
引用本文: 高建军, 迪林, 王彬, 于樾, 齐渊洪. 钒钛磁铁矿金属化球团电炉熔分钒钛竞争还原机理[J]. 钢铁钒钛, 2025, 46(2): 112-117. doi: 10.7513/j.issn.1004-7638.2025.02.016
GAO Jianjun, DI Lin, WANG Bin, YU Yue, QI Yuanhong. Competitive reduction mechanism of vanadium and titanium of vanadium-titanium magnetite metallized pellets smelted by electric arc furnace[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 112-117. doi: 10.7513/j.issn.1004-7638.2025.02.016
Citation: GAO Jianjun, DI Lin, WANG Bin, YU Yue, QI Yuanhong. Competitive reduction mechanism of vanadium and titanium of vanadium-titanium magnetite metallized pellets smelted by electric arc furnace[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 112-117. doi: 10.7513/j.issn.1004-7638.2025.02.016

钒钛磁铁矿金属化球团电炉熔分钒钛竞争还原机理

doi: 10.7513/j.issn.1004-7638.2025.02.016
基金项目: 国家重点研发计划资助课题(2024YFC3909505);国家自然科学基金资助项目(52204339)。
详细信息
    作者简介:

    高建军,1985年出生,男,陕西榆林人,博士后,高级工程师,长期从事低碳冶金和钒钛磁铁矿高效综合利用研究工作,E-mail:gaojianjun2085@163.com

  • 中图分类号: TF841.3,TF823

Competitive reduction mechanism of vanadium and titanium of vanadium-titanium magnetite metallized pellets smelted by electric arc furnace

  • 摘要: 钒钛磁铁矿是一种富含铁、钒、钛等多种金属元素的特殊铁矿资源。高炉冶炼钒钛磁铁矿技术已经非常成熟,但需要配加普通铁精矿,造成炉渣中TiO2含量低,难以进行TiO2的资源化回收。为了实现钒钛磁铁矿中铁、钒、钛的综合利用,钒钛磁铁矿气基竖炉直接还原-电炉熔分技术逐渐被认为是回收铁、钒、钛的最有效技术。该技术可以实现全钒钛磁铁矿冶炼,不需要配加熔剂,可以获得高TiO2含量的炉渣,进行炉渣中TiO2的资源化利用。钒钛磁铁矿金属化球团电炉熔分过程中,为了将钒还原进入铁水,需要配加还原剂进行深度还原,熔渣中的钒和钛会竞争还原。笔者进行了熔渣中V2O5和TiO2与碳还原反应的热力学计算,得到了TiO2与C反应生成TiC以及V2O5对TiC反应的抑制关系。计算结果表明,在熔分温度1500 ℃以上,还原剂碳配加量足够的条件下,钒钛磁铁矿金属化球团电炉熔分过程中不可避免会还原生成TiC,V2O5虽然可以抑制TiC的生成,但由于熔渣中TiO2含量高、活度大,V2O5活度小,V2O5难以抑制TiC的生成。钒钛磁铁矿金属化球团电炉熔分仍然存在炉渣变稠,电炉排渣困难的问题。
  • 图  1  钒钛磁铁矿气基竖炉直接还原-电炉熔分工艺流程

    Figure  1.  Flow chart of vanadium-titanium magnetite gas based direct reduction-electric arc furnace smelting process

    图  2  钒钛磁铁矿金属化球团XRD分析结果

    Figure  2.  XRD analysis of metallized pellets of vanadium titano-magnetite

    图  3  不同温度条件下V的平衡活度$ {\bf{\alpha }}_{[{\rm{V}}]} $与熔渣中V2O3活度${\bf{\alpha}}_{\mathrm{\left(V_2O_3\right)}} $的关系

    Figure  3.  The relationship between the equilibrium activity $ {{\bf{\alpha}}}_{[{\rm{V}}]} $ and the activity ${\boldsymbol{\alpha}}_{\mathrm{\left(V_2O_3\right)}} $ in slag at different temperatures

    图  4  $ \mathit{\alpha}_{\left(\mathbf{T}\mathbf{i}\mathbf{O}_2\right)} $固定条件下温度与$ \left[\mathbf{T}\mathbf{i}\right] $含量的关系

    Figure  4.  The relationship between temperature and $ \left[\mathrm{T}\mathrm{i}\right] $ under the condition of fixed ${\alpha}_{\left({{\bf{TiO}}_2}\right)} $

    图  5  不同温度条件下$ {\alpha }_{\left(\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}\right)} \cdot {{\alpha }_{\left[\mathrm{V}\right]}}^{2} $与熔渣中V2O3活度$ {\alpha }_{\left({\mathrm{V}}_{2}{\mathrm{O}}_{3}\right)} $的关系

    Figure  5.  The relationship between $ {{\alpha}_{\left(\mathrm{TiO_2}\right)}\cdot\mathrm{\alpha}_{\left[\mathrm{V}\right]}}^{2} $ and $ \mathrm{\alpha}_{\left(\mathrm{V_2O_3}\right)} $ in slag at different temperatures

    图  6  反应平衡时炉渣TiO2临界活度

    Figure  6.  The critical activity of TiO2 at reaction equilibrium

    表  1  钒钛磁铁矿金属化球团成分

    Table  1.   Chemical composition of vanadium titano-magnetite metallized pellets %

    TFe MFe FeO CaO MgO Al2O3 SiO2 TiO2 V2O5 Cr2O3 MnO C S
    67.66 57.54 12.76 0.22 1.51 4.25 4.16 15.94 2.35 0.71 0.48 0.082 0.016
    下载: 导出CSV
  • [1] CHEN R F, LONG T, CHEN Q S, et al. New energy-storage metal vanadium resources: demand prediction and supply analysis[J]. Strategic Study of CAE, 2024,26(3):74-85. (陈仁凤, 龙涛, 陈其慎, 等. 新型储能金属钒资源需求预测与供应分析[J]. 中国工程科学, 2024,26(3):74-85. doi: 10.15302/J-SSCAE-2024.03.010

    CHEN R F, LONG T, CHEN Q S, et al. New energy-storage metal vanadium resources: demand prediction and supply analysis[J]. Strategic Study of CAE, 2024, 26(3): 74-85. doi: 10.15302/J-SSCAE-2024.03.010
    [2] AN Z S, CHEN Y, ZHAO W, et al. 2023 China titanium industry development report[J]. Iron Steel Vanadium Titanium, 2024,45(3):1-8. (安仲生, 陈岩, 赵巍, 等. 2023年中国钛工业发展报告[J]. 钢铁钒钛, 2024,45(3):1-8.

    AN Z S, CHEN Y, ZHAO W, et al. 2023 China titanium industry development report[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 1-8.
    [3] HUANG Y, CHU M S, YAN R J. Application of optimization technology for vanadium titanate smelting index in 1750 m3 blast furnace of Pangang group[J]. China Metallurgy, 2024,34(2):96-107. (黄云, 储满生, 闫瑞军. 攀钢1750 m3高炉冶炼钒钛矿指标优化技术应用[J]. 中国冶金, 2024,34(2):96-107.

    HUANG Y, CHU M S, YAN R J. Application of optimization technology for vanadium titanate smelting index in 1750 m3 blast furnace of Pangang group[J]. China Metallurgy, 2024, 34(2): 96-107.
    [4] LA X S, ZHANG Z F, CHEN S J, et al. Forming reason of hearth sediments in vanadium titanium magnetite BF smelting process[J]. Journal of Iron and Steel Research, 2015,27(7):20-25. (喇校帅, 张振峰, 陈树军, 等. 高炉冶炼钒钛矿过程中炉缸沉积物的形成原因[J]. 钢铁研究学报, 2015,27(7):20-25.

    LA X S, ZHANG Z F, CHEN S J, et al. Forming reason of hearth sediments in vanadium titanium magnetite BF smelting process[J]. Journal of Iron and Steel Research, 2015, 27(7): 20-25.
    [5] PANG Z D, LÜ X W, YAN Z M, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag[J]. Iron and Steel, 2020,55(8):181-186. (庞正德, 吕学伟, 严志明, 等. 超高TiO2高炉渣黏度及熔化性温度[J]. 钢铁, 2020,55(8):181-186.

    PANG Z D, LÜ X W, YAN Z M, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag[J]. Iron and Steel, 2020, 55(8): 181-186.
    [6] XIE H E, YU W Z, YOU Z X, et al. The effect of titanium carbonitride on the viscosity of high–titanium–type blast furnace slag[J]. Metals, 2019, 9: 395.
    [7] LÜ Q, TANG Q, SUN Y Q, et al. Relationship between blast furnace slag properties of vanadium titano-magnetite and reduction of vanadium oxide[J]. Iron Steel Vanadium Titanium, 2016,37(6):1-4. (吕庆, 唐琦, 孙艳芹, 等. 钒钛磁铁矿高炉冶炼的炉渣性质与钒氧化物还原关系[J]. 钢铁钒钛, 2016,37(6):1-4.

    LÜ Q, TANG Q, SUN Y Q, et al. Relationship between blast furnace slag properties of vanadium titano-magnetite and reduction of vanadium oxide[J]. Iron Steel Vanadium Titanium, 2016, 37(6): 1-4.
    [8] BAI C G, LÜ X W, QIU G B, et al. Research process on high efficiency metallurgy and clean extraction of vanadium-titanium magnetite ore in Panxi area[J]. The Chinese Journal of Process Engineering, 2022,22(10):1390-1399. (白晨光, 吕学伟, 邱贵宝, 等. 攀西钒钛磁铁矿资源高效冶金及清洁提取研究进展[J]. 过程工程学报, 2022,22(10):1390-1399. doi: 10.12034/j.issn.1009-606X.222302

    BAI C G, LÜ X W, QIU G B, et al. Research process on high efficiency metallurgy and clean extraction of vanadium-titanium magnetite ore in Panxi area[J]. The Chinese Journal of Process Engineering, 2022, 22(10): 1390-1399. doi: 10.12034/j.issn.1009-606X.222302
    [9] ZHANG S S, HU P, RAO J T, et al. Comprehensive utilization status of vanadium-titanium magnetite and feasibility analysis of HIsmelt smelting[J]. Journal of Central South University (Science and Technology), 2021,52(9):3085-3092. (张树石, 胡鹏, 饶家庭, 等. 钒钛磁铁矿综合利用技术现状及HIsmelt冶炼可行性分析[J]. 中南大学学报(自然科学版), 2021,52(9):3085-3092.

    ZHANG S S, HU P, RAO J T, et al. Comprehensive utilization status of vanadium-titanium magnetite and feasibility analysis of HIsmelt smelting[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3085-3092.
    [10] GAO J J, HONG L K, XU H J, et al. Smelting-separation for metallized pellets of vanadium-titanium magnetite and slag phase analysis[J]. Nonferrous Metals (Extractive Metallurgy), 2018(3):14-18. (高建军, 洪陆阔, 徐洪军, 等. 钒钛磁铁矿金属化球团还原熔分试验及渣相分析[J]. 有色金属(冶炼部分), 2018(3):14-18.

    GAO J J, HONG L K, XU H J, et al. Smelting-separation for metallized pellets of vanadium-titanium magnetite and slag phase analysis[J]. Nonferrous Metals (Extractive Metallurgy), 2018(3): 14-18.
    [11] ZHANG Y H, LONG H M, CHUN T J, et al. Recovery of iron from vanadium-bearing titanomagnetite by deep direct reduction and melting process[J]. Journal of Iron and Steel Research, 2016,28(9):17-23. (张艳华, 龙红明, 春铁军, 等. 钒钛磁铁矿深度直接还原熔分提铁[J]. 钢铁研究学报, 2016,28(9):17-23.

    ZHANG Y H, LONG H M, CHUN T J, et al. Recovery of iron from vanadium-bearing titanomagnetite by deep direct reduction and melting process[J]. Journal of Iron and Steel Research, 2016, 28(9): 17-23.
    [12] GAO J J, HONG L K, ZHANG J, et al. Experiment study of vanadium titano-magnetite by full oxygen bath smelting process[J]. Iron Steel Vanadium Titanium, 2018,39(2):8-13. (高建军, 洪陆阔, 张俊, 等. 钒钛磁铁矿全氧熔池熔炼试验研究[J]. 钢铁钒钛, 2018,39(2):8-13. doi: 10.7513/j.issn.1004-7638.2018.02.001

    GAO J J, HONG L K, ZHANG J, et al. Experiment study of vanadium titano-magnetite by full oxygen bath smelting process[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 8-13. doi: 10.7513/j.issn.1004-7638.2018.02.001
    [13] HAN Z W. Experimental study on new process of gas-based direct reduction-electric furnace smelting separation for vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2011. (韩子文. 钒钛磁铁矿气基竖炉直接还原-电炉熔分新工艺的实验研究[D]. 沈阳: 东北大学, 2011.

    HAN Z W. Experimental study on new process of gas-based direct reduction-electric furnace smelting separation for vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2011.
    [14] QIN T X, HU X, ZHANG K Z, et al. Technical and economic analysis of the new process of smelting vanadium-titanium magnetite[C]. Panzhihua: 2010 Symposium on non blast furnace ironmaking and comprehensive utilization of vanadium-titanium magnetite. (秦廷许, 胡晓, 张珂泽, 等. 钒钛磁铁矿冶炼新流程技术经济分析[C]. 攀枝花: 2010年非高炉炼铁学术年会暨钒钛磁铁矿综合利用技术研讨会.

    QIN T X, HU X, ZHANG K Z, et al. Technical and economic analysis of the new process of smelting vanadium-titanium magnetite[C]. Panzhihua: 2010 Symposium on non blast furnace ironmaking and comprehensive utilization of vanadium-titanium magnetite.
    [15] LIU S L. Study on technology and theory of direct reduction by RHF and smelting separation by arc furnace from vanadium and titanium iron concentrate[D]. Chongqing: Chongqing University. (刘松利. 钒钛铁精矿转底炉直接还原-电炉熔分工艺与理论研究[D]. 重庆: 重庆大学, 2010.

    LIU S L. Study on technology and theory of direct reduction by RHF and smelting separation by arc furnace from vanadium and titanium iron concentrate[D]. Chongqing: Chongqing University.
    [16] LIAO J L, LI J, WANG X D, et al. Influence of TiO2 and basicity on viscosity of Ti bearing slag[J]. Ironmaking Steelmaking, 2012,39(2):133-139. doi: 10.1179/1743281211Y.0000000064
    [17] WANG S, GUO Y F, JIANG T, et al. Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets[J]. JOM, 2017,69(9):1646-1653. doi: 10.1007/s11837-017-2367-x
    [18] DU H G. Principle of blast furnaces melting vanadium- titanium magnetite[M]. Beijing: Science Press, 1996: 62. (杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996: 62.

    DU H G. Principle of blast furnaces melting vanadium- titanium magnetite[M]. Beijing: Science Press, 1996: 62.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回