中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱激发高钛重矿渣胶凝材料研发及性能研究

刘蓝 曹知勤 何逵 孙新坡 廖映华 杨星 唐文静 李玉婷 郑涛彬

刘蓝, 曹知勤, 何逵, 孙新坡, 廖映华, 杨星, 唐文静, 李玉婷, 郑涛彬. 碱激发高钛重矿渣胶凝材料研发及性能研究[J]. 钢铁钒钛, 2025, 46(2): 97-102. doi: 10.7513/j.issn.1004-7638.2025.02.014
引用本文: 刘蓝, 曹知勤, 何逵, 孙新坡, 廖映华, 杨星, 唐文静, 李玉婷, 郑涛彬. 碱激发高钛重矿渣胶凝材料研发及性能研究[J]. 钢铁钒钛, 2025, 46(2): 97-102. doi: 10.7513/j.issn.1004-7638.2025.02.014
LIU Lan, CAO Zhiqin, HE Kui, SUN Xinpo, LIAO Yinghua, YANG Xing, TANG Wenjing, LI Yuting, ZHENG Taobin. Preparation and performance of alkali-activated high-titanium heavy slag cementitious materials[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 97-102. doi: 10.7513/j.issn.1004-7638.2025.02.014
Citation: LIU Lan, CAO Zhiqin, HE Kui, SUN Xinpo, LIAO Yinghua, YANG Xing, TANG Wenjing, LI Yuting, ZHENG Taobin. Preparation and performance of alkali-activated high-titanium heavy slag cementitious materials[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 97-102. doi: 10.7513/j.issn.1004-7638.2025.02.014

碱激发高钛重矿渣胶凝材料研发及性能研究

doi: 10.7513/j.issn.1004-7638.2025.02.014
基金项目: 四川轻化工大学校级创新训练计划项目(CX2024160);四川省科技厅计划项目(2020YJ0360)。
详细信息
    作者简介:

    刘蓝,2002年出生,女,四川资阳人,本科生,主要从事固废综合利用研究,E-mail:2724666354@qq.com

    通讯作者:

    何逵,1988年出生,男,湖南衡阳人,博士,讲师,主要从事固废综合利用研究,E-mail:243280330@qq.com

  • 中图分类号: TF044

Preparation and performance of alkali-activated high-titanium heavy slag cementitious materials

  • 摘要: 碱激发胶凝材料跟传统硅酸盐水泥相比,具有生产工艺简单、投资少、能耗低、二氧化碳排放量低、矿渣利用率高等优点。通过设计不同水灰比、碱激发剂及其用量,研发碱激发高钛重矿渣胶凝材料,分析其力学性能,获得了最优的材料组成配比;同时结合XRD、SEM分析了其物相组成及微观结构,揭示了碱激发高钛重矿渣胶凝材料水化产物及水化机理。主要结论如下:水玻璃激发效果明显优于氢氧化钠,当水灰比为0.32时,液体水玻璃含量为6%,模数为1时制备的碱激发高钛重矿渣胶凝材料力学性能最优,28 d抗压强度可达13.5 MPa;物相及微观形貌分析可知主要胶凝材料的水化产物为水化硅酸钙,同时生成了少量的水铝钙石晶体。
  • 图  1  高钛重矿渣XRD图谱分析

    Figure  1.  XRD analysis of high-titanium heavy slag

    图  2  不同水灰比对胶凝材料力学性能影响

    (a)水玻璃;(b)氢氧化钠

    Figure  2.  Effects of water-cement ratio on properties of cementitious materials

    图  3  水玻璃浓度对胶凝材料性能影响

    Figure  3.  Effect of sodium silicate concentration on properties of cementitious material

    (a)3 d;(b)7 d;(c)28 d

    图  4  水玻璃模数对胶凝材料性能影响

    Figure  4.  Effect of sodium silicate modulus on properties of cementitious material

    (a)3 d;(b)7 d;(c)28 d

    图  5  氢氧化钠浓度对胶凝材料力学性能的影响

    Figure  5.  Influence of sodium hydroxide concentration on mechanical properties of cementitious materials

    图  6  不同养护期水玻璃激发高钛重矿渣胶凝材料XRD图谱

    Figure  6.  XRD patterns of high-titanium heavy slag materials activated by sodium silicate during different curing periods

    图  7  不同养护期水玻璃激发高钛重矿渣材料微观形貌

    Figure  7.  Microscopic morphology of high-titanium slag activated by sodium silicate during different curing periods

    (a)3 d;(b)7 d;(c)28 d

    表  1  液体水玻璃物理化学指标

    Table  1.   Physical and chemical indexes of liquid sodium silicate

    模数波美度(20 ℃)密度/(g·mL−1氧化钠/%二氧化硅/%透明度/%
    3.2541.0~42.51.394~1.4158.5~10.527.5~30.585
    下载: 导出CSV

    表  2  减水剂的理化性质

    Table  2.   Physical and chemical properties of water-reducing agents

    掺量/%减水率/%含气率/%pH值Cl含量/%细度/mm
    0.02~0.25≥4567~9≤0.3≤0.315
    下载: 导出CSV

    表  3  高钛重矿渣组成成分

    Table  3.   Composition of high-titanium heavy slag %

    TFeClSiO2CaOMgOTiO2SO3Al2O3fCaOPbCrMnO
    27.050.01911.2326.952.897.470.505.590.160.010.2671.90
    下载: 导出CSV

    表  4  钢球基本参数

    Table  4.   Basic parameters of the steel ball

    介质 型号/mm 密度/(kg·m−3 质量/g 表面积/mm2
    Ø20 7800 32.7 1256
    钢球 Ø25 7800 63.8 1962.5
    Ø30 7800 110.2 2826
    下载: 导出CSV

    表  5  不同水灰比试验配比

    Table  5.   Experiments with different water-cement ratios

    编号模数水玻璃
    浓度/%
    氢氧化钠
    浓度/%
    水/mL矿渣/g减水剂/g水泥/g
    Z11.58030870.35
    Z21.58032870.35
    Z31.58034870.35
    Z41.58036870.35
    Z51.58038870.35
    Z61.58040870.35
    Z71.58050870.35
    Z800830870.35
    Z900835870.35
    Z1000840870.35
    下载: 导出CSV

    表  6  水玻璃激发高钛重矿渣试验配比

    Table  6.   Ratio of activated slag of sodium silicate

    编号水玻璃模数水玻璃浓度/%水/mL矿渣/g减水剂/g水泥/g
    Z11432960.35
    Z21632940.35
    Z31832920.35
    Z41.5432960.35
    Z51.5632940.35
    Z61.5832920.35
    Z72.0432960.35
    Z82.0632940.35
    Z92.0832920.35
    下载: 导出CSV

    表  7  氢氧化钠激发高钛重矿渣试验配比

    Table  7.   Sodium hydroxide concentration ratio for alkali-activated high-titanium heavy slag

    编号氢氧化钠/g矿渣/g水/mL减水剂/g水泥/g
    Z1491300.35
    Z2689300.35
    Z3887300.35
    下载: 导出CSV
  • [1] HU Y, YIN S, LI K, et al. Comprehensive utilization of solid waste resources: Development of wet shotcrete for mines[J]. International Journal of Minerals, Metallurgy and Materials, 2023,30(9):1692-1704. doi: 10.1007/s12613-022-2563-8
    [2] ZAI X. Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. Comprehensive utilization of resources in China, 2019, 39(1): 4. (再协. 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用, 2021, 39(01): 4.

    ZAI X. Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. Comprehensive utilization of resources in China, 2019, 39(1): 4.
    [3] HE K, DENG Y, CAO Z, et al. Engineering performance and microscale structure of activated high titanium slag-soil-cement-bentonite (HTS-SCB) slurry backfill[J]. Construction and Building Materials, 2023,373:130776. doi: 10.1016/j.conbuildmat.2023.130776
    [4] WANG H B, SUN Q Z, ZHANG X F , et al. Effect of trisodium phosphate on the preparation of microcrystalline foam glass from high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. ) (王海波, 孙青竹, 张雪峰, 等. 磷酸三钠对高钛高炉渣制备微晶泡沫玻璃的影响[J]. 钢铁钒钛, 2021, 42(4): 57-61.

    WANG H B, SUN Q Z, ZHANG X F , et al. Effect of trisodium phosphate on the preparation of microcrystalline foam glass from high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. )
    [5] YANG T Y, SHU B A, QIU W J, et al. Internal curing aggregate, shrinkage reducer and expansion agent cooperate to improve the volume stability of UHPC materials[J]. Concrete, 2023(12):120-125. (杨腾宇, 舒本安, 邱文俊, 等. 内养护集料、减缩剂与膨胀剂协同提升UHPC材料体积稳定性[J]. 混凝土, 2023(12):120-125. doi: 10.3969/j.issn.1002-3550.2023.12.024

    YANG T Y, SHU B A, QIU W J, et al. Internal curing aggregate, shrinkage reducer and expansion agent cooperate to improve the volume stability of UHPC materials[J]. Concrete, 2023(12): 120-125. doi: 10.3969/j.issn.1002-3550.2023.12.024
    [6] TANG L Y, LI C H, LI W X, et al. Comprehensive utilization of solid waste resources in the cement industry in Sichuan Province and its impact on carbon emissions[J]. Sichuan Building Materials, 2024, 50 (4): 11-12+53 (唐丽英, 李春洪, 李文旭, 等. 四川省水泥行业固废资源综合利用情况及其对碳排放的影响[J]. 四川建材, 2024, 50 (4)

    TANG L Y, LI C H, LI W X, et al. Comprehensive utilization of solid waste resources in the cement industry in Sichuan Province and its impact on carbon emissions[J]. Sichuan Building Materials, 2024, 50 (4): 11-12+53
    [7] LI J, CHEN D B, YU Q J, et al. The reaction process of slag in different concentrations of sodium hydroxide solution[J]. Journal of the Chinese Ceramic Society, 2024, 52 (5): 1508-1519. (李静, 陈东彬, 余其俊, 等. 矿渣在不同浓度氢氧化钠溶液中的反应过程[J]. 硅酸盐学报, 2024, 52 (5): 1508-1519 .

    LI J, CHEN D B, YU Q J, et al. The reaction process of slag in different concentrations of sodium hydroxide solution[J]. Journal of the Chinese Ceramic Society, 2024, 52 (5): 1508-1519.
    [8] ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology, 2024,56(1):165-172. (张少峰, 牛荻涛, 罗大明, 等. 激发剂对钢渣水泥的活化及作用机理[J]. 哈尔滨工业大学学报, 2024,56(1):165-172.

    ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 165-172.
    [9] YANG H, CHEN W, MA S S, et al. Experimental study on the mechanical properties of high-titanium heavy slag tunnel shotcrete concrete[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118-122. (杨贺, 陈伟, 马双狮, 等. 高钛重矿渣隧道喷射混凝土力学性能试验研究[J]. 钢铁钒钛, 2023, 44(3): 118-122.

    YANG H, CHEN W, MA S S, et al. Experimental study on the mechanical properties of high-titanium heavy slag tunnel shotcrete concrete[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118-122.
    [10] LIANG H Z, CHEN W, YANG H. Experimental study on the durability of high-titanium heavy slag concrete under salt-frost action[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 100-106. (梁贺之, 陈伟, 杨贺. 盐冻作用下高钛重矿渣混凝土耐久性试验研究[J]. 钢铁钒钛, 2022, 43(4): 100-106.

    LIANG H Z, CHEN W, YANG H. Experimental study on the durability of high-titanium heavy slag concrete under salt-frost action[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 100-106.
    [11] CHEN J X, LI H F, CHEN H B, et al. Study on ultra-high-strength concrete with addition of ultrafine limestone powder and titanium slag powder[J]. Journal of Building Materials, 2005, (6): 672-676. (陈剑雄, 李鸿芳, 陈寒斌, 等. 掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J]. 建筑材料学报, 2005, (6): 672-676.

    CHEN J X, LI H F, CHEN H B, et al. Study on ultra-high-strength concrete with addition of ultrafine limestone powder and titanium slag powder[J]. Journal of Building Materials, 2005, (6): 672-676.
    [12] OBENAUS R, FALAH M, ILLIKAINEN M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications[J]. Construction and Building Materials, 2020,246:118470. doi: 10.1016/j.conbuildmat.2020.118470
    [13] CHI M, HUANG R. Effects of dosage and modulus ratio of alkali-activated solution on the properties of slag mortars[J]. Advanced Science Letters, 2012,16(1):7-12. doi: 10.1166/asl.2012.3313
    [14] CHEN T A, CHEN J H, HUANG J S. Effects of activator and aging process on the compressive strengths of alkali-activated glass inorganic binders[J]. Cement and Concrete Composites, 2017,76:1-12. doi: 10.1016/j.cemconcomp.2016.11.011
    [15] PROVIS J L. Alkali-activated materials[J]. Cement and concrete research, 2018,114:40-48. doi: 10.1016/j.cemconres.2017.02.009
    [16] WANG S D, SCRIVENER K L. Hydration products of alkali activated slag cement[J]. Cement and Concrete research, 1995,25(3):561-571. doi: 10.1016/0008-8846(95)00045-E
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  21
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回