Preparation and performance of alkali-activated high-titanium heavy slag cementitious materials
-
摘要: 碱激发胶凝材料跟传统硅酸盐水泥相比,具有生产工艺简单、投资少、能耗低、二氧化碳排放量低、矿渣利用率高等优点。通过设计不同水灰比、碱激发剂及其用量,研发碱激发高钛重矿渣胶凝材料,分析其力学性能,获得了最优的材料组成配比;同时结合XRD、SEM分析了其物相组成及微观结构,揭示了碱激发高钛重矿渣胶凝材料水化产物及水化机理。主要结论如下:水玻璃激发效果明显优于氢氧化钠,当水灰比为0.32时,液体水玻璃含量为6%,模数为1时制备的碱激发高钛重矿渣胶凝材料力学性能最优,28 d抗压强度可达13.5 MPa;物相及微观形貌分析可知主要胶凝材料的水化产物为水化硅酸钙,同时生成了少量的水铝钙石晶体。Abstract: Compared with traditional silicate cement, alkali-activated cementitious materials have advantages such as simple production processes, low investment, low energy consumption, low carbon dioxide emissions, and high slag utilization rates. This study develops alkali-activated high-titanium heavy slag cementitious materials by designing different water-to-cement ratios, alkali activators, and their dosages, and analyzes their mechanical properties to obtain the optimal material composition ratio. At the same time, through XRD and SEM analysis, the phase composition and microstructure are examined, revealing the hydration products and hydration mechanisms of alkali-activated high-titanium heavy slag cementitious materials. The main conclusions are as follows:Sodium silicate demonstrates significantly better activation effectiveness than sodium hydroxide. The alkali-activated high-titanium heavy slag cementitious material achieves optimal mechanical properties when prepared with a water-to-cement ratio of 0.32, 6% liquid sodium silicate content, and a modulus of 1. with a compressive strength of up to 13.5 MPa after 28 days. Phase and microstructure analyses indicate that the primary hydrated product of the cementitious material is calcium silicate hydrate, while a small amount of calcium aluminum silicate crystals is also generated.
-
表 1 液体水玻璃物理化学指标
Table 1. Physical and chemical indexes of liquid sodium silicate
模数 波美度(20 ℃) 密度/(g·mL−1) 氧化钠/% 二氧化硅/% 透明度/% 3.25 41.0~42.5 1.394~1.415 8.5~10.5 27.5~30.5 85 表 2 减水剂的理化性质
Table 2. Physical and chemical properties of water-reducing agents
掺量/% 减水率/% 含气率/% pH值 Cl含量/% 细度/mm 0.02~0.25 ≥45 6 7~9 ≤0.3 ≤0.315 表 3 高钛重矿渣组成成分
Table 3. Composition of high-titanium heavy slag
% TFe Cl− SiO2 CaO MgO TiO2 SO3 Al2O3 fCaO Pb Cr MnO 27.05 0.019 11.23 26.95 2.89 7.47 0.50 5.59 0.16 0.01 0.267 1.90 表 4 钢球基本参数
Table 4. Basic parameters of the steel ball
介质 型号/mm 密度/(kg·m−3) 质量/g 表面积/mm2 Ø20 7800 32.7 1256 钢球 Ø25 7800 63.8 1962 .5Ø30 7800 110.2 2826 表 5 不同水灰比试验配比
Table 5. Experiments with different water-cement ratios
编号 模数 水玻璃
浓度/%氢氧化钠
浓度/%水/mL 矿渣/g 减水剂/g 水泥/g Z1 1.5 8 0 30 87 0.3 5 Z2 1.5 8 0 32 87 0.3 5 Z3 1.5 8 0 34 87 0.3 5 Z4 1.5 8 0 36 87 0.3 5 Z5 1.5 8 0 38 87 0.3 5 Z6 1.5 8 0 40 87 0.3 5 Z7 1.5 8 0 50 87 0.3 5 Z8 0 0 8 30 87 0.3 5 Z9 0 0 8 35 87 0.3 5 Z10 0 0 8 40 87 0.3 5 表 6 水玻璃激发高钛重矿渣试验配比
Table 6. Ratio of activated slag of sodium silicate
编号 水玻璃模数 水玻璃浓度/% 水/mL 矿渣/g 减水剂/g 水泥/g Z1 1 4 32 96 0.3 5 Z2 1 6 32 94 0.3 5 Z3 1 8 32 92 0.3 5 Z4 1.5 4 32 96 0.3 5 Z5 1.5 6 32 94 0.3 5 Z6 1.5 8 32 92 0.3 5 Z7 2.0 4 32 96 0.3 5 Z8 2.0 6 32 94 0.3 5 Z9 2.0 8 32 92 0.3 5 表 7 氢氧化钠激发高钛重矿渣试验配比
Table 7. Sodium hydroxide concentration ratio for alkali-activated high-titanium heavy slag
编号 氢氧化钠/g 矿渣/g 水/mL 减水剂/g 水泥/g Z1 4 91 30 0.3 5 Z2 6 89 30 0.3 5 Z3 8 87 30 0.3 5 -
[1] HU Y, YIN S, LI K, et al. Comprehensive utilization of solid waste resources: Development of wet shotcrete for mines[J]. International Journal of Minerals, Metallurgy and Materials, 2023,30(9):1692-1704. doi: 10.1007/s12613-022-2563-8 [2] ZAI X. Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. Comprehensive utilization of resources in China, 2019, 39(1): 4. (再协. 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用, 2021, 39(01): 4.ZAI X. Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. Comprehensive utilization of resources in China, 2019, 39(1): 4. [3] HE K, DENG Y, CAO Z, et al. Engineering performance and microscale structure of activated high titanium slag-soil-cement-bentonite (HTS-SCB) slurry backfill[J]. Construction and Building Materials, 2023,373:130776. doi: 10.1016/j.conbuildmat.2023.130776 [4] WANG H B, SUN Q Z, ZHANG X F , et al. Effect of trisodium phosphate on the preparation of microcrystalline foam glass from high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. ) (王海波, 孙青竹, 张雪峰, 等. 磷酸三钠对高钛高炉渣制备微晶泡沫玻璃的影响[J]. 钢铁钒钛, 2021, 42(4): 57-61.WANG H B, SUN Q Z, ZHANG X F , et al. Effect of trisodium phosphate on the preparation of microcrystalline foam glass from high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. ) [5] YANG T Y, SHU B A, QIU W J, et al. Internal curing aggregate, shrinkage reducer and expansion agent cooperate to improve the volume stability of UHPC materials[J]. Concrete, 2023(12):120-125. (杨腾宇, 舒本安, 邱文俊, 等. 内养护集料、减缩剂与膨胀剂协同提升UHPC材料体积稳定性[J]. 混凝土, 2023(12):120-125. doi: 10.3969/j.issn.1002-3550.2023.12.024YANG T Y, SHU B A, QIU W J, et al. Internal curing aggregate, shrinkage reducer and expansion agent cooperate to improve the volume stability of UHPC materials[J]. Concrete, 2023(12): 120-125. doi: 10.3969/j.issn.1002-3550.2023.12.024 [6] TANG L Y, LI C H, LI W X, et al. Comprehensive utilization of solid waste resources in the cement industry in Sichuan Province and its impact on carbon emissions[J]. Sichuan Building Materials, 2024, 50 (4): 11-12+53 (唐丽英, 李春洪, 李文旭, 等. 四川省水泥行业固废资源综合利用情况及其对碳排放的影响[J]. 四川建材, 2024, 50 (4)TANG L Y, LI C H, LI W X, et al. Comprehensive utilization of solid waste resources in the cement industry in Sichuan Province and its impact on carbon emissions[J]. Sichuan Building Materials, 2024, 50 (4): 11-12+53 [7] LI J, CHEN D B, YU Q J, et al. The reaction process of slag in different concentrations of sodium hydroxide solution[J]. Journal of the Chinese Ceramic Society, 2024, 52 (5): 1508-1519. (李静, 陈东彬, 余其俊, 等. 矿渣在不同浓度氢氧化钠溶液中的反应过程[J]. 硅酸盐学报, 2024, 52 (5): 1508-1519 .LI J, CHEN D B, YU Q J, et al. The reaction process of slag in different concentrations of sodium hydroxide solution[J]. Journal of the Chinese Ceramic Society, 2024, 52 (5): 1508-1519. [8] ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology, 2024,56(1):165-172. (张少峰, 牛荻涛, 罗大明, 等. 激发剂对钢渣水泥的活化及作用机理[J]. 哈尔滨工业大学学报, 2024,56(1):165-172.ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 165-172. [9] YANG H, CHEN W, MA S S, et al. Experimental study on the mechanical properties of high-titanium heavy slag tunnel shotcrete concrete[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118-122. (杨贺, 陈伟, 马双狮, 等. 高钛重矿渣隧道喷射混凝土力学性能试验研究[J]. 钢铁钒钛, 2023, 44(3): 118-122.YANG H, CHEN W, MA S S, et al. Experimental study on the mechanical properties of high-titanium heavy slag tunnel shotcrete concrete[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118-122. [10] LIANG H Z, CHEN W, YANG H. Experimental study on the durability of high-titanium heavy slag concrete under salt-frost action[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 100-106. (梁贺之, 陈伟, 杨贺. 盐冻作用下高钛重矿渣混凝土耐久性试验研究[J]. 钢铁钒钛, 2022, 43(4): 100-106.LIANG H Z, CHEN W, YANG H. Experimental study on the durability of high-titanium heavy slag concrete under salt-frost action[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 100-106. [11] CHEN J X, LI H F, CHEN H B, et al. Study on ultra-high-strength concrete with addition of ultrafine limestone powder and titanium slag powder[J]. Journal of Building Materials, 2005, (6): 672-676. (陈剑雄, 李鸿芳, 陈寒斌, 等. 掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J]. 建筑材料学报, 2005, (6): 672-676.CHEN J X, LI H F, CHEN H B, et al. Study on ultra-high-strength concrete with addition of ultrafine limestone powder and titanium slag powder[J]. Journal of Building Materials, 2005, (6): 672-676. [12] OBENAUS R, FALAH M, ILLIKAINEN M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications[J]. Construction and Building Materials, 2020,246:118470. doi: 10.1016/j.conbuildmat.2020.118470 [13] CHI M, HUANG R. Effects of dosage and modulus ratio of alkali-activated solution on the properties of slag mortars[J]. Advanced Science Letters, 2012,16(1):7-12. doi: 10.1166/asl.2012.3313 [14] CHEN T A, CHEN J H, HUANG J S. Effects of activator and aging process on the compressive strengths of alkali-activated glass inorganic binders[J]. Cement and Concrete Composites, 2017,76:1-12. doi: 10.1016/j.cemconcomp.2016.11.011 [15] PROVIS J L. Alkali-activated materials[J]. Cement and concrete research, 2018,114:40-48. doi: 10.1016/j.cemconres.2017.02.009 [16] WANG S D, SCRIVENER K L. Hydration products of alkali activated slag cement[J]. Cement and Concrete research, 1995,25(3):561-571. doi: 10.1016/0008-8846(95)00045-E -