Research on iron separation test of a high chromium vanadium-titanium magnetite in Panxi
-
摘要: 利用Zeiss Sigma 500扫描电子显微镜、Bruker能谱仪、AMICS自动矿物分析系统和筛分、磨矿、磁选等手段对攀西某高铬型钒钛磁铁矿开展了矿物特性及实验室抛尾选铁试验。矿样主要矿物为钛磁铁矿、透辉石、橄榄石、钛铁矿和角闪石等,脉石矿物与钛铁矿和钛磁铁矿嵌布关系复杂,钛铁矿与钛磁铁矿紧密共生,V和Cr赋存于钛磁铁矿,钛磁铁矿内存在微米级客晶矿物,其限制了铁精矿TFe品位提高和TiO2含量降低。试样采用湿式强磁选抛尾,效果良好,抛尾精矿需在较细粒度时才能实现钛铁矿与钛磁铁矿明显解离和显著分离,磨矿选铁时V和Cr主要进入弱磁精矿。试样采用湿式强磁选预先抛尾-三段阶段磨矿阶段选铁工艺,在磨矿细度−38 μm占97.58%时,获得了TFe 57.06%、TiO2 11.07%、V2O5 0.591%、Cr 1.10%的含铬钒钛铁精矿,相对于原矿,TFe、TiO2、V2O5、Cr的回收率分别为67.51%、38.66%、90.95%、87.55%。Abstract: The mineral characteristics and laboratory discarding tailings and iron separation of a high chromium vanadium-titanium magnetite from Panxi were studied by using Zeiss Sigma 500 scanning electron microscope, Bruker energy spectrometer, AMICS automatic mineral analysis system, sieving, grinding and magnetic separation. The main minerals in the ore are titanomagnetite, diopside, olivine, ilmenite and hornblende. The embedding relationship between gangue, ilmenite and titanomagnetite is complex. The ilmenite is closely coexisting with titanomagnetite, and V, Cr are occurrenced in titanomagnetite. There are micrometer sized guest crystal minerals within titanomagnetite, which limites the increase of TFe grade and the decrease of TiO2 content in iron concentrates. The wet high-intensity magnetic separation used for the ore sample has a good effect on discarding tailings, and discarding tailings concentrate can only achieve significant dissociation and separation of ilmentite and titanomagnetite at a finer particle size. During iron separation process, V and Cr were mainly distributed in the iron concentrate. Using a wet high-intensity magnetic discarding tailings and three-stage stage grinding and stage iron selection process under the conditions of grinding fineness of −38 μm accounting for 97.58% obtained a vanadium chromium iron concentrate containing 57.06% TFe, 11.07% TiO2 , 0.591% V2O5 and 1.10% Cr. Relative to the original ore, the recovery rate of TFe, TiO2, V2O5, and Cr were respectively 67.51%, 38.66%, 90.95% and 87.55%.
-
表 1 矿样化学成分分析结果
Table 1. Chemical composition analysis of the ore sample
% TFe TiO2 V2O5 Cr SiO2 Al2O3 MgO S P As 22.40 7.29 0.173 0.336 29.48 4.50 12.83 0.149 0.037 0.001 Cu Co Ni Pb Zn Mn CaO K2O Na2O 0.024 0.004 0.056 0.001 0.021 0.181 10.06 0.139 0.18 表 2 试验原料矿物组成
Table 2. The mineral composition of the test sample
% 钛磁铁矿 透辉石 角闪石 钛铁矿 镁橄榄石 贵橄榄石 榍石 普通辉石 黑云母 镁铝尖晶石 钙钛矿 黄铜矿 34.98 34.81 6.87 6.80 5.21 3.75 1.61 0.86 0.73 0.68 0.10 0.09 方解石 钙长石 钾长石 钙铁辉石 铁橄榄石 磷灰石 石英 磁黄铁矿 钛辉石 镍黄铁矿 其他 合计 0.67 0.61 0.44 0.39 0.36 0.25 0.24 0.20 0.16 0.11 0.08 100.00 表 3 样品Fe元素赋存状态分析结果
Table 3. The occurrence state of Fe in the sample
% 项 目 磁性铁
中Fe钛铁矿
中Fe赤褐铁
矿中Fe硫化物
中Fe硅酸盐
中Fe碳酸盐
中FeTFe 含量 15.43 2.26 1.62 0.13 2.96 痕量 22.40 分布率 68.88 10.09 7.23 0.58 13.22 痕量 100.00 表 4 样品Ti元素赋存状态分析结果
Table 4. The occurrence state of Ti in the sample
% 项 目 钛磁铁矿
中TiO2钛铁矿
中TiO2金红石
中TiO2硅酸盐
中TiO2总TiO2 含量 2.92 3.15 0.06 1.16 7.29 分布率 40.05 43.21 0.82 15.92 100.00 表 5 粒度对抛尾产品指标影响
Table 5. The effect of grain size on discarding tailings product index
粒度条件/mm 产品名称 产率/% 品位/% 回收率/% TFe TiO2 V2O5 Cr TFe TiO2 V2O5 Cr −15 精 矿 82.18 25.33 8.62 0.202 0.392 93.33 93.09 95.96 95.88 尾 矿 17.82 8.35 2.95 <0.05 <0.05 6.67 6.91 3.67 4.12 原 矿 100.00 22.30 7.61 0.173 0.336 100.00 100.00 100.00 100.00 −10 精 矿 77.91 26.40 9.00 0.213 0.413 91.91 91.63 95.92 95.76 尾 矿 22.09 8.20 2.90 <0.05 <0.05 8.09 8.37 4.08 4.24 原 矿 100.00 22.38 7.65 0.173 0.336 100.00 100.00 100.00 100.00 −5 精 矿 74.15 27.42 9.24 0.222 0.435 90.77 90.08 95.15 96.00 尾 矿 25.85 8.00 2.92 <0.05 <0.05 9.23 9.92 4.85 4.00 原 矿 100.00 22.40 7.61 0.173 0.336 100.00 100.00 100.00 100.00 −3 精 矿 65.57 29.62 9.91 0.248 0.475 87.44 85.74 94.00 92.70 尾 矿 34.43 8.10 3.14 <0.05 <0.05 12.56 14.26 6.00 7.30 原 矿 100.00 22.21 7.58 0.173 0.336 100.00 100.00 100.00 100.00 表 6 抛尾尾矿Fe化学物相分析结果
Table 6. Chemical phase analysis results of Fe in tailings
% 项 目 磁性铁中Fe 钛铁矿中Fe 赤褐铁矿中Fe 硫化物中Fe 硅酸盐中Fe 碳酸盐中Fe TFe 含量 0.20 0.49 1.19 0.08 6.04 痕量 8.00 分布率 2.50 6.13 14.88 1.00 75.49 痕量 100.00 表 7 抛尾尾矿TiO2化学物相分析结果
Table 7. Chemical phase analysis results of TiO2 in tailings
% 项 目 钛磁铁矿中TiO2 钛铁矿中TiO2 金红石中TiO2 硅酸盐中TiO2 总TiO2 含量 0.01 0.87 0.02 2.02 2.92 分布率 0.34 29.79 0.68 69.19 100.00 表 8 抛尾尾矿矿物组成及主要脉石抛除情况
Table 8. The mineral composition of the discarding tailings and main gangue removal situation
% 矿物种类 钛磁铁矿 透辉石 角闪石 钛铁矿 镁橄榄石 贵橄榄石 榍石 普通辉石 方解石 钙长石 钾长石 其它 合计 含量 0.25 60.00 16.98 1.23 7.57 2.29 0.92 1.49 1.64 2.16 1.56 3.91 100.00 抛除率 0.18 44.56 63.89 4.68 37.56 15.79 14.77 44.79 63.27 91.53 91.65 表 9 一段磨选磨矿细度条件试验结果
Table 9. The grinding fineness conditions experiment results of the first stage grinding and iron separation
磨矿细度(−74 μm占比)/% 产品名称 作业产率/% 品位/% 作业回收率/% TFe TiO2 V2O5 Cr TFe TiO2 V2O5 Cr 25.00 精 矿 64.11 38.25 12.03 0.345 0.67 88.71 82.49 99.63 98.74 尾 矿 35.89 8.70 4.56 <0.10 <0.20 11.29 17.51 0.37 1.26 原 矿 100.00 27.64 9.35 0.222 0.435 100.00 100.00 100.00 100.00 30.00 精 矿 58.82 40.50 12.44 0.376 0.73 86.73 78.87 99.62 98.71 尾 矿 41.18 8.85 4.76 <0.10 <0.20 13.27 21.13 0.38 1.29 原 矿 100.00 27.47 9.28 0.222 0.435 100.00 100.00 100.00 100.00 35.00 精 矿 55.36 42.00 12.49 0.398 0.77 85.27 75.34 99.25 97.99 尾 矿 44.64 9.00 5.07 <0.10 <0.20 14.73 24.66 0.75 2.01 原 矿 100.00 27.27 9.18 0.222 0.435 100.00 100.00 100.00 100.00 40.00 精 矿 54.15 42.60 12.47 0.406 0.78 84.68 73.65 99.03 97.10 尾 矿 45.85 9.10 5.27 <0.10 <0.20 15.32 26.35 0.97 2.90 原 矿 100.00 27.24 9.17 0.222 0.435 100.00 100.00 100.00 100.00 45.00 精 矿 53.27 43.80 12.74 0.407 0.79 84.94 73.78 97.66 96.74 尾 矿 46.73 8.85 5.16 <0.10 <0.20 15.06 26.22 2.34 3.26 原 矿 100.00 27.47 9.20 0.222 0.435 100.00 100.00 100.00 100.00 表 10 一段磨矿选铁尾矿矿物组成
Table 10. Mineral composition of tailings of first stage grinding and iron separation
% 钛磁铁矿 透辉石 角闪石 钛铁矿 镁橄榄石 贵橄榄石 榍石 普通辉石 方解石 钙长石 钾长石 其它 合计 0.43 60.32 14.75 2.63 12.44 2.96 1.36 1.49 0.54 0.35 0.21 2.52 100.00 表 11 二段磨矿磁选选铁试验结果
Table 11. The grinding fineness conditions experiment results of the second stage grinding and iron separation
磨矿细度(占比)/% 产品名称 作业产率/% 品位/% 作业回收率/% −74 μm占比 −43 μm占比 TFe TiO2 V2O5 Cr TFe TiO2 V2O5 Cr 58.84 精 矿 82.61 48.37 12.48 0.491 0.95 93.79 82.65 99.91 98.04 尾 矿 17.39 15.21 12.44 0.002 0.09 6.21 17.35 0.09 1.96 原 矿 100.00 42.60 12.47 0.406 0.78 100.00 100.00 100.00 100.00 74.92 精 矿 78.65 50.62 12.39 0.510 0.96 93.46 78.15 98.83 97.30 尾 矿 21.35 13.05 12.76 0.022 0.10 6.54 21.85 1.17 2.70 原 矿 100.00 42.60 12.47 0.406 0.78 100.00 100.00 100.00 100.00 91.08 精 矿 74.59 52.50 12.35 0.536 1.02 91.92 73.87 98.45 97.14 尾 矿 25.41 13.55 12.82 0.025 0.09 8.08 26.13 1.55 2.86 原 矿 100.00 42.60 12.47 0.406 0.78 100.00 100.00 100.00 100.00 99.12 82.22 精 矿 72.52 53.38 12.28 0.547 1.03 90.87 71.42 97.65 96.30 尾 矿 27.48 14.15 12.58 0.035 0.11 9.13 26.57 2.35 3.70 原 矿 100.00 42.60 12.47 0.406 0.78 100.00 100.00 100.00 100.00 90.24 精 矿 70.92 54.27 12.11 0.556 1.06 90.35 68.87 97.16 96.02 尾 矿 29.08 14.14 12.77 0.040 0.11 9.65 29.79 2.84 3.98 原 矿 100.00 42.60 12.47 0.406 0.78 100.00 100.00 100.00 100.00 表 12 二段磨矿选铁尾矿矿物组成
Table 12. Mineral composition of tailings of second stage grinding and iron separation
% 钛磁铁矿 透辉石 角闪石 钛铁矿 镁橄榄石 贵橄榄石 榍石 普通辉石 方解石 钙长石 钛辉石 其它 合计 2.38 36.08 11.81 14.52 15.65 9.66 3.28 1.39 0.13 0.11 2.47 2.52 100.00 表 13 三段磨矿磁选选铁试验结果
Table 13. The grinding fineness conditions experiment results of the third stage grinding and iron separation
磨矿细度(−38 μm占比)/% 产品名称 作业产率/% 品位/% 作业回收率/% TFe TiO2 V2O5 Cr TFe TiO2 V2O5 Cr 74.72 精 矿 89.16 53.98 12.11 0.543 1.04 95.06 85.03 97.41 97.06 尾 矿 10.84 23.07 17.54 0.119 0.26 4.94 14.97 2.59 2.94 原 矿 100.00 50.63 12.70 0.497 0.96 100.00 100.00 100.00 100.00 82.84 精 矿 87.87 54.75 12.02 0.552 1.05 94.35 83.07 97.00 96.50 尾 矿 12.13 23.75 17.74 0.124 0.28 5.65 16.93 3.00 3.50 原 矿 100.00 50.99 12.71 0.500 0.96 100.00 100.00 100.00 100.00 88.76 精 矿 87.11 55.00 11.93 0.557 1.06 94.18 81.68 96.98 96.44 尾 矿 12.89 22.97 18.08 0.117 0.27 5.82 18.32 3.02 3.56 原 矿 100.00 50.87 12.72 0.500 0.96 100.00 100.00 100.00 100.00 91.00 精 矿 85.52 56.00 11.84 0.559 1.08 93.56 79.54 96.35 95.76 尾 矿 14.48 22.77 17.99 0.125 0.28 6.44 20.46 3.65 4.24 原 矿 100.00 51.19 12.73 0.496 0.96 100.00 100.00 100.00 100.00 94.24 精 矿 84.87 56.25 11.68 0.568 1.08 93.23 78.23 96.27 95.49 尾 矿 15.13 22.91 18.23 0.124 0.29 6.77 21.77 3.73 4.51 原 矿 100.00 51.21 12.67 0.501 0.96 100.00 100.00 100.00 100.00 97.58 精 矿 83.25 57.06 11.07 0.591 1.10 93.32 72.90 97.45 95.65 尾 矿 16.75 20.31 20.44 0.077 0.25 6.68 27.10 2.55 4.35 原 矿 100.00 50.90 12.64 0.505 0.96 100.00 100.00 100.00 100.00 99.20 精 矿 81.30 56.85 10.97 0.581 1.10 90.79 71.05 94.54 92.66 尾 矿 18.70 25.06 19.44 0.146 0.38 9.21 28.95 5.46 7.34 原 矿 100.00 50.91 12.56 0.500 0.96 100.00 100.00 100.00 100.00 表 14 三段磨矿选铁尾矿矿物组成
Table 14. Mineral composition of tailings of third stage grinding and iron separation
% 钛磁铁矿 透辉石 角闪石 钛铁矿 镁橄榄石 贵橄榄石 榍石 普通辉石 镁铝尖晶石 钙长石 钛辉石 其它 合计 4.32 9.01 14.28 21.74 14.81 13.22 6.61 3.90 5.64 0.09 2.32 4.06 100.00 -
[1] CHEN F L, YANG X J, YANG D G, et al. Research on process mineralogy for a low-grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6):64-68. (陈福林, 杨晓军, 杨道广, 等. 甘肃某低品位钒钛磁铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(6):64-68. doi: 10.3969/j.issn.1000-6532.2020.06.011CHEN F L, YANG X J, YANG D G, et al. Research on process mineralogy for a low-grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 64-68. doi: 10.3969/j.issn.1000-6532.2020.06.011 [2] CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of Baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(6):26-30. (陈福林, 杨晓军, 蔡先炎, 等. 攀西地区白马辉长岩型超低品位钒钛磁铁矿选铁试验研究[J]. 矿产综合利用, 2020(6):26-30. doi: 10.3969/j.issn.1000-6532.2020.06.005CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of Baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 26-30. doi: 10.3969/j.issn.1000-6532.2020.06.005 [3] ZHU J S. Beneficiation and comprehensive utilization of vanadium titanium magnetite[J]. Metal Mine, 2000,1:1-11. (朱骏士. 钒钛磁铁矿选矿及综合利用[J]. 金属矿山, 2000,1:1-11. doi: 10.3321/j.issn:1001-1250.2000.01.001ZHU J S. Beneficiation and comprehensive utilization of vanadium titanium magnetite[J]. Metal Mine, 2000, 1: 1-11. doi: 10.3321/j.issn:1001-1250.2000.01.001 [4] CHEN C, ZHANG Y S, ZHANG S X, et al. Characteristics of Panzhihua iron concentrate and experimental study on lifting iron and reducing impurities[J]. Comprehensive Utilization of Mineral Resources, 2018(3):57-60. (陈超, 张裕书, 张少祥, 等. 攀枝花铁精矿特性及提铁降杂试验研究[J]. 矿产综合利用, 2018(3):57-60.CHEN C, ZHANG Y S, ZHANG S X, et al. Characteristics of Panzhihua iron concentrate and experimental study on lifting iron and reducing impurities[J]. Comprehensive Utilization of Mineral Resources, 2018(3): 57-60. [5] ZHOU Z, ZHAO H L, LI B R, et al. Experimental study on a vanadium-titanium magnetite in Hongge[J]. Comprehensive Utilization of Mineral Resources, 2018,1:32-35. (周政, 赵华伦, 李兵荣, 等. 红格某钒钛磁铁矿选矿试验研究[J]. 矿产综合利用, 2018,1:32-35. doi: 10.3969/j.issn.1000-6532.2018.01.007ZHOU Z, ZHAO H L, LI B R, et al. Experimental study on a vanadium-titanium magnetite in Hongge[J]. Comprehensive Utilization of Mineral Resources, 2018, 1: 32-35. doi: 10.3969/j.issn.1000-6532.2018.01.007 [6] LIU Y C, DING Q G, XU M. Co-associated resources and utilization of Panxi vanadium-titanium magnetite[M]. Beijing: Metallurgical Industry Press, 2014. (刘亚川, 丁其光, 徐明. 攀西钒钛磁铁矿共伴生资源及利用[M]. 北京: 冶金工业出版社, 2014.LIU Y C, DING Q G, XU M. Co-associated resources and utilization of Panxi vanadium-titanium magnetite[M]. Beijing: Metallurgical Industry Press, 2014. [7] WANG Q, LIAO R Y Z, TIAN X L, et al.Vanadium-titanium magnetite in Panxi area, Sichuan province[M]. Beijing: Science Press, 2015. (王茜, 廖阮颖子, 田小林, 等. 四川省攀西地区钒钛磁铁矿[M]. 北京: 科学出版社, 2015.WANG Q, LIAO R Y Z, TIAN X L, et al.Vanadium-titanium magnetite in Panxi area, Sichuan province[M]. Beijing: Science Press, 2015. [8] YANG X J, CHEN F L. Special report on the overview, trial circle calculation, and sampling research of low grade vanadium-titanium magnetite resources in Panxi region[R]. Sichuan Geological and Mineral Bureau Surveying center, 2012. (杨晓军, 陈福林. 攀西地区低品位钒钛磁铁矿资源概况、试圈试算及采样研究专题报告[R]. 四川地矿局成测中心, 2012.YANG X J, CHEN F L. Special report on the overview, trial circle calculation, and sampling research of low grade vanadium-titanium magnetite resources in Panxi region[R]. Sichuan Geological and Mineral Bureau Surveying center, 2012. [9] CHEN F L, CAI X Y, LI S, et al. Mineral characteristics research and tests of improving quality of vanadium titanium iron concentrate in Panxi area[J]. Comprehensive Utilization of Mineral Resources, 2023,3:1-13. (陈福林, 蔡先炎, 李硕, 等. 攀西某钒钛铁精矿矿物特性及提质[J]. 矿产综合利用, 2023,3:1-13. doi: 10.3969/j.issn.1000-6532.2023.01.001CHEN F L, CAI X Y, LI S, et al. Mineral characteristics research and tests of improving quality of vanadium titanium iron concentrate in Panxi area[J]. Comprehensive Utilization of Mineral Resources, 2023, 3: 1-13. doi: 10.3969/j.issn.1000-6532.2023.01.001 [10] HUI B, YANG Y H. Study on the properties of the olivine-type vanadium-titanium magnetite ore in the Hongge mining area of Panxi and its influence on the beneficiation process[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. (惠博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021HUI B, YANG Y H. Study on the properties of the olivine-type vanadium-titanium magnetite ore in the Hongge mining area of Panxi and its influence on the beneficiation process[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021 [11] DING D F. Study on iron separation process of Hongge vanadium titanomagnetite[J]. Metal Mine, 1996(3):24-26. (丁大富. 红格钒钛磁铁矿选铁工艺流程的研究[J]. 金属矿山, 1996(3):24-26.DING D F. Study on iron separation process of Hongge vanadium titanomagnetite[J]. Metal Mine, 1996(3): 24-26. [12] CHEN T, HU Z B, CHEN C, et al. Mineral precessing experement of Panxi Hongge olivine pyroxenne type vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2020,41(6):74-80. (陈桃, 胡志波, 陈程, 等. 攀西红格橄辉岩型钒钛磁铁矿选矿试验[J]. 钢铁钒钛, 2020,41(6):74-80. doi: 10.7513/j.issn.1004-7638.2020.06.014CHEN T, HU Z B, CHEN C, et al. Mineral precessing experement of Panxi Hongge olivine pyroxenne type vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 74-80. doi: 10.7513/j.issn.1004-7638.2020.06.014 -