中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚毫米级细粒人造金红石搅拌制粒研究

任雨荞 陈凤 叶恩东 郭宇峰 张濛 王帅 杨凌志

任雨荞, 陈凤, 叶恩东, 郭宇峰, 张濛, 王帅, 杨凌志. 亚毫米级细粒人造金红石搅拌制粒研究[J]. 钢铁钒钛, 2025, 46(2): 83-89. doi: 10.7513/j.issn.1004-7638.2025.02.012
引用本文: 任雨荞, 陈凤, 叶恩东, 郭宇峰, 张濛, 王帅, 杨凌志. 亚毫米级细粒人造金红石搅拌制粒研究[J]. 钢铁钒钛, 2025, 46(2): 83-89. doi: 10.7513/j.issn.1004-7638.2025.02.012
REN Yuqiao, CHEN Feng, YE Endong, GUO Yufeng, ZHANG Meng, WANG Shuai, YANG Lingzhi. Study on the granulation of sub-millimeter fine-grade artificial rutile with high-speed stirring[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 83-89. doi: 10.7513/j.issn.1004-7638.2025.02.012
Citation: REN Yuqiao, CHEN Feng, YE Endong, GUO Yufeng, ZHANG Meng, WANG Shuai, YANG Lingzhi. Study on the granulation of sub-millimeter fine-grade artificial rutile with high-speed stirring[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 83-89. doi: 10.7513/j.issn.1004-7638.2025.02.012

亚毫米级细粒人造金红石搅拌制粒研究

doi: 10.7513/j.issn.1004-7638.2025.02.012
详细信息
    作者简介:

    任雨荞,2000年出生,湖南常德人,博士研究生,研究方向为钒钛资源清洁生产,E-mail:225607001@csu.edu.cn

    通讯作者:

    叶恩东,1974年出生,四川大竹人,工程硕士,正高级工程师,研究方向为攀西钛资源综合利用,E-mail:419739881@qq.com

  • 中图分类号: TF823

Study on the granulation of sub-millimeter fine-grade artificial rutile with high-speed stirring

  • 摘要: 对亚毫米级细粒人造金红石搅拌制粒工艺进行研究。通过试验对比,选定最佳制粒制度为:NA为添加剂,NA添加量1.5%,制粒水分20%,混合转速为300、600 r/min的时间分别为3 、5 min,切割刀转速600 r/min。获得粒径为0.097~0.45 mm的制粒产品,制粒后粒径小于0.097 mm的颗粒占比低于15%。对制粒产品进行强度检测,干燥及1000 ℃热处理后磨损指数分别为8.54%、4.40%,表明经过热处理后颗粒的强度得到有效提升。制粒后产物在流态化氯化环境中仍能保持完整形态,氯化反应30 min后,残余物中TiO2占比仅12.64%,氯化效果较好。
  • 图  1  亚毫米级细粒人造金红石物相及粒度组成

    (a) 物相组成; (b)粒度分布

    Figure  1.  Phase and particle size composition of sub-millimeter fine-grade artificial rutile

    图  2  亚毫米级细粒人造金红石微观形貌

    (a)颗粒粒径>100 μm;(b)颗粒粒径<100 μm

    Figure  2.  Micromorphology of sub-millimeter fine-grade artificial rutile

    图  3  设备制粒原理及内部结构示意

    (a)设备制粒原理;(b)设备内部结构

    Figure  3.  Schematic diagram of equipment granulation principle and internal structure

    图  4  小型沸腾氯化试验装置

    (a)装置整体结构;(b)内部反应器

    Figure  4.  Small-scale boiling chlorination experimental device

    图  5  不同粘结剂压团冷/热强度对比

    Figure  5.  Comparison of cold/hot strength of different binders

    图  6  亚毫米级细粒人造金红石制粒产物形貌

    (a)制粒后0.097~0.45 mm粒级产物;(b)1 000 ℃热处理后颗粒;(c)(d)105 ℃干燥处理后颗粒

    Figure  6.  Morphology of sub-millimeter fine-grade artificial rutile granulation products

    图  7  亚毫米级细粒人造金红石制粒产物不同时间氯化后颗粒微观形貌

    Figure  7.  Sub-millimeter fine grained artificial rutile granulating product after different chlorination time

    (a)(b) 15 min;(c)(d)30 min

    表  1  亚毫米级细粒人造金红石主要化学成分

    Table  1.   Main chemical composition of sub-millimeter fine grade artificial rutile %

    TiO2TFeSiO2Al2O3MgOCaO
    88.622.405.190.3940.6150.753
    下载: 导出CSV

    表  2  粘结剂添加量对产物粒度分布的影响

    Table  2.   Influence of binder addition on product particle size distribution

    编号 NA添加量/% 制粒时间/min 切割刀转速/(r·min−1) 制粒产物粒度分布/%
    400 r/min 600 r/min +0.45 mm 0.097~0.45 mm −0.097 mm
    1 1.5 3 5 600 29.20 58.10 12.70
    2 1.0 9.63 59.38 30.99
    3 0.7 4.54 48.18 47.28
    下载: 导出CSV

    表  3  制粒转速对产物粒度分布的影响

    Table  3.   Influence of granulation speed on product size distribution

    编号NA添加量/%制粒转速/(r·min−1)切割刀转速
    /(r·min−1)
    制粒产物粒度分布/%
    3 min5 min+0.45 mm0.097~0.45 mm−0.097 mm
    11.530060060025.2960.4814.28
    230070026.5053.3520.16
    340060029.2058.1012.70
    下载: 导出CSV

    表  4  切割刀转速对产物粒度分布的影响

    Table  4.   Influence of cutting knife speed on product particle size distribution

    编号 NA添加量/% 制粒时间/min 切割刀转速/(r·min−1) 制粒产物粒度分布/%
    300 r/min 600 r/min +0.45 mm 0.097~0.45 mm −0.097 mm
    1 1.5 3 5 300 45.28 43.95 10.77
    2 400 31.76 57.32 10.92
    3 500 39.40 49.19 11.41
    4 600 25.29 60.48 14.23
    下载: 导出CSV

    表  5  制粒时间对产物粒度分布的影响

    Table  5.   Influence of granulation time on product size distribution

    编号 NA添加量/% 制粒时间/min 切割刀转速/
    (r·min−1)
    制粒产物粒度分布/%
    300 r/min 600 r/min +0.45 mm 0.097~0.45 mm −0.097 mm
    1 1.5 4 4 600 42.93 43.65 13.42
    2 3 5 25.29 60.48 14.23
    3 3 6 35.27 49.18 15.55
    4 2 5 30.04 48.96 21.00
    下载: 导出CSV

    表  6  不同条件下亚毫米级细粒人造金红石制粒产物化学成分

    Table  6.   Chemical compositions of sub-millimeter fine-grade artificial rutile granulation products under different conditions

    组号重量/g化学成分/%
    CaOMgOTFeSiO2TiO2Al2O3
    11300.7530.6152.45.1988.620.394
    249.471.310.940.6727.7149.690.47
    321.002.581.921.0511.5512.640.74
    注:氯化后样品化学成分中包含配入石油焦,其含量未标注在内。
    下载: 导出CSV
  • [1] AN Z S, CHEN Y, ZHAO W, et al. Report on China titanium industry progress in 2023[J]. Titanium Industry Progress, 2024,41(2):41-48. (安仲生, 陈岩, 赵巍, 等. 2023年中国钛工业发展报告[J]. 钛工业进展, 2024,41(2):41-48.

    AN Z S, CHEN Y, ZHAO W, et al. Report on China titanium industry progress in 2023[J]. Titanium Industry Progress, 2024, 41(2): 41-48.
    [2] NGUYEN T H, LEE M S. A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies[J]. Mineral Processing and Extractive Metallurgy Review, 2019,40(4):231-247. doi: 10.1080/08827508.2018.1502668
    [3] GÁZQUEZ M J, BOLÍVAR J P, GARCÍA-TENORIO R, et al. A review of the production cycle of titanium dioxide pigment[J]. Materials Science and Applications, 2014,5:441-458. doi: 10.4236/msa.2014.57048
    [4] MO W, DENG G Z, LUO F C. Titanium metallurgy [M]. Beijing: Metallurgical Industry Press, 1998. (莫畏, 邓国珠, 罗方承. 钛冶金[M]. 北京: 冶金工业出版社, 1998

    MO W, DENG G Z, LUO F C. Titanium metallurgy [M]. Beijing: Metallurgical Industry Press, 1998.
    [5] LI Z. Research on upgrading Panzhihua-Xichang ilmenite to prepare synthetic rutile[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2021. (李哲. 攀西钛精矿提质制备人造金红石研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2021.

    LI Z. Research on upgrading Panzhihua-Xichang ilmenite to prepare synthetic rutile[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2021.
    [6] LIU J. Development of study on preparation of Ti-rich raw materials for boiling chlorinated from Panzhihua titanium resources[J]. China Nonferrous Metallurgy, 2018,47(6):49-53. (刘娟. 攀枝花钛资源制备沸腾氯化用富钛原料研究进展[J]. 中国有色冶金, 2018,47(6):49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014

    LIU J. Development of study on preparation of Ti-rich raw materials for boiling chlorinated from Panzhihua titanium resources[J]. China Nonferrous Metallurgy, 2018, 47(6): 49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014
    [7] ZHU F X, MA S R, MA Z S, et al. Preparation of TiCl4 from panzhihua ilmenite concentrate by boiling chlorination[J]. Journal of Materials Research and Technology, 2023,23:2703-2718. doi: 10.1016/j.jmrt.2023.01.190
    [8] BONSACK J P, SCHNEIDER F E. Entrained-flow chlorination of titaniferous slag to produce titanium tetrachloride[J]. Metallurgical Materials Transactions B 2001, 32: 389-293.
    [9] ZHANG W S, ZHU Z W, CHENG C Y. A literature review of titanium metallurgical processes[J]. Hydrometallurgy, 2011,108(3):177-188.
    [10] KAHN J A. Non-rutile feedstocks for the production of titanium[J]. JOM, 1984,36(7):33-38. doi: 10.1007/BF03338498
    [11] CHEN Q, KASOMO R M, LI H Q, et al. Froth flotation of rutile-An overview[J]. Minerals Engineering, 2021,163:106797. doi: 10.1016/j.mineng.2021.106797
    [12] LI Z, CHEN C X. Development status of global titanium resources industry[J]. Acta Geoscientica Sinica, 2021,42(2):245-250. (李政, 陈从喜. 全球钛资源行业发展现状[J]. 地球学报, 2021,42(2):245-250. doi: 10.3975/cagsb.2020.102001

    LI Z, CHEN C X. Development status of global titanium resources industry[J]. Acta Geoscientica Sinica, 2021, 42(2): 245-250. doi: 10.3975/cagsb.2020.102001
    [13] HOU X L, CHEN F, ZHENG F Q, et al. Research status of granulation technology process of fine-grade rich titanium material[J]. Multipurpose Utilization of Mineral Resources, 2022(4):100-105. (侯晓磊, 陈凤, 郑富强, 等. 细粒富钛料制粒工艺技术研究现状[J]. 矿产综合利用, 2022(4):100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018

    HOU X L, CHEN F, ZHENG F Q, et al. Research status of granulation technology process of fine-grade rich titanium material[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018
    [14] WANG H P. Design and optimization of fluidized reactor adapting to fine-grade rich titanium material[D]. Chongqing: Chongqing University, 2018. (王海鹏. 细粒级钛原料循环流态化工艺的模型实验及温度效应研究[D]. 重庆:重庆大学, 2018.

    WANG H P. Design and optimization of fluidized reactor adapting to fine-grade rich titanium material[D]. Chongqing: Chongqing University, 2018.
    [15] CHEN X L, ZHOU X W, GAN M, et al. Study on the fluidized bed granulation of fine-grained rutile concentrate[J]. Powder Technology, 2017,315:53-59. doi: 10.1016/j.powtec.2017.03.036
    [16] YE E D, MIAO H J, CHENG X Z, et al. Fine-grained synthetic rutile pelletizing binding agent and its method of use, CN105271390B [P/OL]. (叶恩东, 缪辉俊, 程晓哲, 等. 细粒级人造金红石造粒结合剂及其使用方法, 中国: 105271390B [P/OL].

    YE E D, MIAO H J, CHENG X Z, et al. Fine-grained synthetic rutile pelletizing binding agent and its method of use, CN105271390B [P/OL].
    [17] CHEN Z C, LU P, WANG J X, et al. A fine-grained titanium raw material agglomeration method, CN102776365A [P/OL]. (陈祝春, 陆平, 王建鑫, 等. 一种细粒级钛原料的团粒方法, CN102776365A [P/OL].

    CHEN Z C, LU P, WANG J X, et al. A fine-grained titanium raw material agglomeration method, CN102776365A [P/OL].
    [18] JIANG X X, JIANG W, WANG S D, et al. A method of fine-grained titanium-rich material granulation, CN106319246B [P/OL]. (蒋训雄, 蒋伟, 汪胜东, 等. 细粒级富钛料造粒方法, CN106319246B [P/OL].

    JIANG X X, JIANG W, WANG S D, et al. A method of fine-grained titanium-rich material granulation, CN106319246B [P/OL].
    [19] LIU X H, MING C L, LI L, et al. Experimental study on granulation of fine titanium-rich materials[J]. Ferro-Alloys, 2019,50(6):30-34. (刘祥海, 明崇伦, 李露, 等. 细粒级富钛料造粒试验研究[J]. 铁合金, 2019,50(6):30-34.

    LIU X H, MING C L, LI L, et al. Experimental study on granulation of fine titanium-rich materials[J]. Ferro-Alloys, 2019, 50(6): 30-34.
    [20] CHEN F, YE E D, GUO Y F, et al. A composite binder and a granulation method used for granulation of fine-grained titanium raw material, CN202411201665.9 [P/OL] (陈凤, 叶恩东, 郭宇峰, 等. 一种用于细粒富钛料制粒的复合粘结剂、制粒方法, CN202411201665.9 [P/OL].

    CHEN F, YE E D, GUO Y F, et al. A composite binder and a granulation method used for granulation of fine-grained titanium raw material, CN202411201665.9 [P/OL]
    [21] LI L, ZHU F X, DENG P, et al. Behavior of magnesium impurity during carbochlorination of magnesium-bearing titanium slag in chloride media[J]. Journal of Materials Research Technology, 2021,13:204-215. doi: 10.1016/j.jmrt.2021.04.072
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回