中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑曲霉菌对工业纯钛的腐蚀影响研究

王文溪 侯福星 王剑云 杨政 王丹 程佳

王文溪, 侯福星, 王剑云, 杨政, 王丹, 程佳. 黑曲霉菌对工业纯钛的腐蚀影响研究[J]. 钢铁钒钛, 2025, 46(2): 46-52. doi: 10.7513/j.issn.1004-7638.2025.02.007
引用本文: 王文溪, 侯福星, 王剑云, 杨政, 王丹, 程佳. 黑曲霉菌对工业纯钛的腐蚀影响研究[J]. 钢铁钒钛, 2025, 46(2): 46-52. doi: 10.7513/j.issn.1004-7638.2025.02.007
WANG Wenxi, HOU Fuxing, WANG Jianyun, YANG Zheng, WANG Dan, CHENG Jia. Effect of Aspergillus niger on the corrosion of industrially pure titanium[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 46-52. doi: 10.7513/j.issn.1004-7638.2025.02.007
Citation: WANG Wenxi, HOU Fuxing, WANG Jianyun, YANG Zheng, WANG Dan, CHENG Jia. Effect of Aspergillus niger on the corrosion of industrially pure titanium[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 46-52. doi: 10.7513/j.issn.1004-7638.2025.02.007

黑曲霉菌对工业纯钛的腐蚀影响研究

doi: 10.7513/j.issn.1004-7638.2025.02.007
详细信息
    作者简介:

    王文溪,1999年出生,女,云南昆明人,硕士生,主要从事微生物腐蚀的研究,E-mail:wx17772480230@163.com

    通讯作者:

    王剑云,1983年出生,女,江苏南通人,教授,主要从事自修复材料和微生物腐蚀研究,E-mail: jianyun.wang@xjtu.edu.cn

  • 中图分类号: TF823,TG174.4

Effect of Aspergillus niger on the corrosion of industrially pure titanium

  • 摘要: 选取黑曲霉菌为典型微生物,研究其对工业纯钛TA2腐蚀行为的影响,采用表面分析技术(激光共聚焦显微镜及扫描电子显微镜),结合电化学分析方法(电化学阻抗谱和动电位极化曲线),研究了工业纯钛TA2在黑曲霉菌富集环境下的耐腐蚀特性。研究发现黑曲霉菌在TA2表面的附着生长改变了钛片的电化学特征,其耐腐蚀性随浸泡时间的增加先增强后减弱,生物膜在一定时间周期内可提高耐蚀性能。生物膜越厚,其耐腐蚀性能越好。尽管如此,在黑曲霉菌液浸泡21 d后,钛片表面仍观察到极少量的点蚀坑,预示出现了霉菌腐蚀。
  • 图  1  黒曲霉菌在PDA中的生长情况

    (a) 1 d; (b) 4 d; (c) 7 d; (d) 10 d

    Figure  1.  The growth of Aspergillus niger in PDA

    图  2  黒曲霉菌生长4 d后钛片边缘附着的黑曲霉菌丝

    (a)(c)钛片不同边缘区域;(b)(d)分别是(a)(c)的放大形貌

    Figure  2.  Aspergillus niger filaments attached to the edge of titanium sheet 4 days after the growth of Aspergillus niger

    图  3  黑曲霉菌生长过程中培养基pH值的变化

    Figure  3.  Change of pH value in the medium during the growth of Aspergillus niger

    图  4  不同浸泡时间钛材表面生物膜厚度

    Figure  4.  Titanium surface biofilm thickness of different soaking time

    图  5  在黑曲霉菌液中浸泡不同时间后钛片表面的微生物膜

    Figure  5.  Microbial membrane on the surface of titanium sheet after soaking in Aspergillus niger solution for different time

    (a) 7 d; (b) 14 d; (c) 21 d

    图  6  TA2钛片的Nyquist图(a)和Bode图(b)

    Figure  6.  Nyquist(a) and Bode(b) plots of TA2 titanium sheets

    图  7  模拟EIS图的等效电路图模型

    (a)不含黑曲霉菌;(b)含黑曲霉菌

    Figure  7.  Equivalent circuit diagram model simulating EIS diagram

    图  8  浸泡于PDB培养基和黑曲霉菌液中钛片的动电位极化曲线

    Figure  8.  Potentiodynamic polarization curves of titanium sheets immersed in PDB medium and Aspergillus niger solution

    (a) 7 d;(b) 14 d;(c) 21 d

    图  9  钛片在黑曲霉菌液中浸泡21 d样品表面的腐蚀形貌

    (a)钛片初始形貌;(b)在黑曲霉菌液中浸泡21 d后的钛片形貌;(c)21 d后在样品表面观察到的点蚀

    Figure  9.  Corrosion morphology of titanium sheet on the surface of the sample containing Aspergillus niger for 21 days

    表  1  拟合参数

    Table  1.   Fitting parameter table

    TA2 t/d $ R_{\mathrm{S}} $/(Ω·cm2) ${Q_1}$×105/(Ω−1·Sn·cm−2) ${n_1}$ ${R_c}$/(Ω·cm2) ${Q_2}$×105/(Ω−1·Sn·cm−2) ${n_2}$ $ R_{\mathrm{ct}} $/(kΩ·cm2)
    不含菌(Sterile) 7 65.68 3.36 0.92 265300
    14 34.98 2.63 0.93 326000
    21 64.04 3.68 0.90 223900
    A.niger 7 30.13 2.08 0.98 22.23 2.99 0.92 572370
    14 25.07 3.07 0.93 78.17 0.3984 0.99 886780
    21 27.70 2.86 0.93 58.6 0.602 0.98 579350
    下载: 导出CSV

    表  2  浸泡于PDB培养基和黑曲霉菌液中的钛片的动电位极化拟合数据

    Table  2.   Potentiodynamic polarization fitting data of titanium sheets immersed in PDB medium and Aspergillus niger solution

    时间/d icorr×108/(A·cm−2) Ecorr/V |βa|/(mV·deg−1) |βc|/(mV·deg−1)
    Aspergillus niger71.27−0.120237.91126.66
    141.93−0.07578.81124.88
    211.16−0.162147.36126.66
    PDB培养基71.30−0.17178.7579.90
    142.09−0.117113.83131.39
    212.23−0.138117.12124.80
    下载: 导出CSV
  • [1] SUN J, QI Y J, LIU H, et al. Research progress on tribo-corrosion of titanium and titanium alloys in seawater environment[J]. Materials Protection, 2020,53(1):151-156. (孙静, 齐元甲, 刘辉, 等. 海洋环境下钛及钛合金的腐蚀磨损研究进展[J]. 材料保护, 2020,53(1):151-156.

    SUN J, QI Y J, LIU H, et al. Research progress on tribo-corrosion of titanium and titanium alloys in seawater environment[J]. Materials Protection, 2020, 53(1): 151-156.
    [2] DONG Y C, FANG Z G, CHANG H, et al. Service performance of titanium alloy in marine environment[J]. Materials China, 2020,39(3):185-190. (董月成, 方志刚, 常辉, 等. 海洋环境下钛合金主要服役性能研究[J]. 中国材料进展, 2020,39(3):185-190. doi: 10.7502/j.issn.1674-3962.201909015

    DONG Y C, FANG Z G, CHANG H, et al. Service performance of titanium alloy in marine environment[J]. Materials China, 2020, 39(3): 185-190. doi: 10.7502/j.issn.1674-3962.201909015
    [3] LI J Q, ZHANG D Y, CHEN X B, et al. Laser directed energy deposited, ultrafine-grained functional titanium-copper alloys tailored for marine environments: Antibacterial and anti-microbial corrosion studies[J]. Journal of Materials Science & Technology, 2023,166:21-33.
    [4] JIANG C M, YANG S X, GUO D, et al. Simulated microgravity accelerates alloy corrosion by aspergillus sp. via the enhanced production of organic acids[J]. Applied and Environmental Microbiology, 2022,88(19):1-16.
    [5] DENG C, ZHAO Z X, HU H S, et al. Comparisons of I and Cl concentrations on the corrosion behavior of TA4 titanium alloy in azeotropic acetic acid solutions[J]. Journal of Physics: Conference Series, 2022,2368(1):012009. doi: 10.1088/1742-6596/2368/1/012009
    [6] SAN N O, NAZIR H, DÖNMEZ G. Evaluation of microbiologically influenced corrosion inhibition on Ni-Co alloy coatings by aeromonas salmonicida and clavibacter michiganensis[J]. Corrosion Science, 2012,65:113-118. doi: 10.1016/j.corsci.2012.08.009
    [7] ZHANG D, WU J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment[J]. Oceanologia et Limnologia Sinica, 2020,51(4):821-828. (张盾, 吴佳佳. 海洋环境微生物腐蚀机理研究进展[J]. 海洋与湖沼, 2020,51(4):821-828. doi: 10.11693/hyhz20200300061

    ZHANG D, WU J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 821-828. doi: 10.11693/hyhz20200300061
    [8] VICTORIA S N, SHARMA A, MANIVANNAN R. Metal corrosion induced by microbial activity-Mechanism and control options[J]. Journal of the Indian Chemical Society, 2021,98(6):100083. doi: 10.1016/j.jics.2021.100083
    [9] JIA R, YANG D Q, XU D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm[J]. Bioelectrochemistry, 2017,118:38-46. doi: 10.1016/j.bioelechem.2017.06.013
    [10] LI Z D, BI Z Y. Effects of environmental conditions such as temperature, salinity and pH on mold growth[J]. Asian Journal of Clinical Medicine, 2019,2(4):33-38. (李卓地, 毕振云. 温度、盐度及pH等环境条件对霉菌生长的影响[J]. 亚洲临床医学杂志, 2019,2(4):33-38.

    LI Z D, BI Z Y. Effects of environmental conditions such as temperature, salinity and pH on mold growth[J]. Asian Journal of Clinical Medicine, 2019, 2(4): 33-38.
    [11] LIU S D, KONG W X, WANG J. Investigation of typical marine mould corrosion environment-A case study of “Dong Fang Hong 2”[J]. Guangzhou Chemical Industry, 2016,44(21):141-143. (刘士栋, 孔维轩, 王佳. 典型海洋霉菌腐蚀环境调查-以“东方红2”为例[J]. 广州化工, 2016,44(21):141-143. doi: 10.3969/j.issn.1001-9677.2016.21.050

    LIU S D, KONG W X, WANG J. Investigation of typical marine mould corrosion environment-A case study of “Dong Fang Hong 2”[J]. Guangzhou Chemical Industry, 2016, 44(21): 141-143. doi: 10.3969/j.issn.1001-9677.2016.21.050
    [12] KHAN M S, LI Z, YANG K, et al. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa[J]. Journal of Materials Science & Technology, 2019,35(1):216-222.
    [13] ZHANG Y X, CHEN C Y, LIU H W, et al. Research progress on mildew induced corrosion of Al-alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2021,41(1):13-21. (张雨轩, 陈翠颖, 刘宏伟, 等. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021,41(1):13-21.

    ZHANG Y X, CHEN C Y, LIU H W, et al. Research progress on mildew induced corrosion of Al-alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(1): 13-21.
    [14] TIAN F, BAI X Q, HE X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018,47(8):182-196. (田丰, 白秀琴, 贺小燕, 等. 海洋环境下金属材料微生物腐蚀研究进展[J]. 表面技术, 2018,47(8):182-196.

    TIAN F, BAI X Q, HE X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018, 47(8): 182-196.
    [15] CHEN J N. The study on microbiologically influenced corrosion behavior and mechanism of hull structure material 907 steel in seawater[D]. Qingdao: University of Chinese Academy of Science (Institute of Oceanology, Chinese Academy of Sciences), 2019. (陈菊娜. 船体结构材料907钢在海水中微生物腐蚀行为及机理研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.

    CHEN J N. The study on microbiologically influenced corrosion behavior and mechanism of hull structure material 907 steel in seawater[D]. Qingdao: University of Chinese Academy of Science (Institute of Oceanology, Chinese Academy of Sciences), 2019.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-20
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回