中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V2O5促进铁锰矿中铁、锰组元高效分离与循环利用机制

刘鑫羽 温婧 袁帅 李易鸿 刘子豪 姜涛

刘鑫羽, 温婧, 袁帅, 李易鸿, 刘子豪, 姜涛. V2O5促进铁锰矿中铁、锰组元高效分离与循环利用机制[J]. 钢铁钒钛, 2025, 46(2): 26-32. doi: 10.7513/j.issn.1004-7638.2025.02.004
引用本文: 刘鑫羽, 温婧, 袁帅, 李易鸿, 刘子豪, 姜涛. V2O5促进铁锰矿中铁、锰组元高效分离与循环利用机制[J]. 钢铁钒钛, 2025, 46(2): 26-32. doi: 10.7513/j.issn.1004-7638.2025.02.004
LIU Xinyu, WEN Jing, YUAN Shuai, LI Yihong, LIU Zihao, JIANG Tao. V2O5 promotes the efficient separation and recycling mechanism of iron and manganese components in ferromanganese ore[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 26-32. doi: 10.7513/j.issn.1004-7638.2025.02.004
Citation: LIU Xinyu, WEN Jing, YUAN Shuai, LI Yihong, LIU Zihao, JIANG Tao. V2O5 promotes the efficient separation and recycling mechanism of iron and manganese components in ferromanganese ore[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 26-32. doi: 10.7513/j.issn.1004-7638.2025.02.004

V2O5促进铁锰矿中铁、锰组元高效分离与循环利用机制

doi: 10.7513/j.issn.1004-7638.2025.02.004
基金项目: 国家重点研发计划青年科学家项目(2023YFC2909000);国家自然科学基金资助项目(52374300,52174277,52204309)。
详细信息
    作者简介:

    刘鑫羽,2001年出生,女,辽宁大连人,硕士研究生,研究方向:共伴生资源综合利用理论与技术,E-mail:liuxinyu5252@163.com

    通讯作者:

    姜涛,1973年出生,男,辽宁本溪人,教授,研究方向:共伴生资源综合利用理论与技术、冶金工艺理论及新工艺等,E-mail:jiangt@neu.edu.cn

  • 中图分类号: TF792,TF841.3

V2O5 promotes the efficient separation and recycling mechanism of iron and manganese components in ferromanganese ore

  • 摘要: 铁锰矿中铁和锰因物理化学性质相近,现有方法难以实现铁、锰组元的高效分离。文中引入V2O5作为添加剂与铁锰矿混合焙烧,系统研究了混合焙烧过程的物相演变规律及酸浸过程锰、铁、钒元素的迁移分离规律与循环利用机制。结果表明,焙烧后铁锰矿中含锰相转化为酸溶性焦钒酸锰,而铁和硅仍然以Fe2O3和SiO2形式存在。焙烧熟料经pH为2和1.8两段酸浸后,Mn、Fe和V的浸出率分别为81.25%、0.0074%和5.77%,实现了锰、铁组元的有效分离。含锰浸出液真空干燥得到MnSO4,可作为锰冶金和锰化工的中间产品。酸浸渣经碱浸后实现了铁、钒分离,富铁尾渣中Fe2O3含量达83.02%,可作为高炉炼铁原料。碱浸液经水解沉淀和焙烧得到V2O5可返回焙烧体系,其循环利用率达90%以上,该过程产生的废水也可返回浸出体系再次利用。该研究为共伴生铁锰资源的清洁高效利用提供了一个新方法。
  • 图  1  铁锰矿的XRD谱

    Figure  1.  XRD pattern of ferromanganese ore

    图  2  铁锰矿的SEM形貌以及主要元素分布

    Figure  2.  SEM pattern of ferromanganese ore and major element maps

    图  3  试验流程示意

    Figure  3.  Experimental flow chart

    图  4  不同n(MnO2)/n(V2O5)下焙烧熟料的XRD谱

    Figure  4.  XRD images of roasted clinker under different n(MnO2)/n(V2O5) conditions

    图  5  不同n(MnO2)/n(V2O5)下焙烧熟料的SEM形貌、主要元素分布

    (a) n(MnO2)/n(V2O5)=1;(b) n(MnO2)/n(V2O5)=2.25;(c) n(MnO2)/n(V2O5)=3

    Figure  5.  SEM and main element distribution maps of roasted clinker under different n(MnO2)/n(V2 O5) conditions

    图  6  不同n(MnO2)/n(V2O5)下主要元素的浸出率及质量分数

    (a) 锰的浸出率、尾渣中锰的质量分数;(b) 铁的浸出率;(c) 钒的浸出率

    Figure  6.  The leaching efficiency and mass fraction of the main elements under different n(MnO2)/n(V2O5) conditions

    图  7  含钒含铁浸出尾渣的SEM形貌和主要元素分布

    Figure  7.  SEM and main element distribution maps of vanadium-containing iron leaching tailings

    图  8  结晶产物的XRD图谱

    Figure  8.  XRD profile of the crystallization product

    图  9  结晶产物的SEM形貌和EDS分析

    Figure  9.  SEM plots and EDS analysis of crystallization product

    图  10  富铁尾渣的XRD谱

    Figure  10.  XRD pattern of iron-rich tailings

    图  11  富铁尾渣的SEM形貌和主要元素分布

    Figure  11.  SEM pattern and main element distribution maps of iron-rich tailings

    图  12  煅烧产物的XRD谱

    Figure  12.  XRD pattern of roasting product

    表  1  铁锰矿的化学成分分析

    Table  1.   Chemical composition analysis of ferromanganese ore %

    Fe2O3 MnO2 SiO2 Al2O3 合计
    66.27 26.97 4.63 1.69 99.56
    下载: 导出CSV

    表  2  富铁尾渣的化学成分分析

    Table  2.   Chemical composition analysis of iron-rich tailings %

    Fe2O3 MnO2 V2O5 SiO2 Al2O3 合计
    83.02 6.44 0.52 5.17 2.06 97.21
    下载: 导出CSV
  • [1] KIM M J, KIM J G. Effect of manganese on the corrosion behavior of low carbon steel in 10 wt.% sulfuric acid[J]. International Journal of Electrochemical Science, 2015,10(9):6873-6885.
    [2] SU G Q, GAO X H, DU L X, et al. Influence of Mn on the corrosion behaviour of medium manganese steels in a simulated seawater environment[J]. International Journal of Electrochemical Science, 2016,11(11):9447-9461. doi: 10.20964/2016.11.51
    [3] LI Y C, LI J G, ZHANG D Z, et al. Optimization of mechanical properties of high-manganese steel for LNG storage tanks: A comprehensive review of alloying element effects[J]. Metals, 2024, 14 (6).
    [4] FALODUN O E, OKE S R, OKORO A M, et al. Characterization of cast manganese steels containing varying manganese and chromium additions[C]. Materials Today-Proceedings, 2020: 730-733.
    [5] XIANG Q. Research on rechargeable lithium manganese battery material electrochemical roasting performance analysis[C]. Future Material Research and Industry Application, Pts 1 And 2, 2012: 889-894.
    [6] ZHANG L H, LIAO Y, YE M, et al. Regeneration of spent lithium manganate batteries into al-doped MnO2 cathodes toward aqueous Zn batteries[J]. Acs Applied Materials & Interfaces, 2023,15(51):59475-59481.
    [7] ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8.
    [8] HOSSAM S E B, MOHAMED F E N, MOHAMED F E N. et al. Exogenous application of manganese and arginine alleviates the adverse effects of salinity stress on pea[J]. Cogent Food & Agriculture, 2024, 10 (1).
    [9] WU X B. Effect of feed manganese level on growth of broilers[J]. China Animal Health, 2021,23(4):91-92. (吴兴斌. 饲料锰水平对肉鸡生长的影响[J]. 中国动物保健, 2021,23(4):91-92.

    WU X B. Effect of feed manganese level on growth of broilers[J]. China Animal Health, 2021, 23(4): 91-92.
    [10] DENG W B, ZHANG Y W, KONG L H, et al. Status quo of manganese ore resources in China and screening of physical geological data of national manganese ore deposits[J]. China Mining Journal, 2019,28(9):175-182. (邓文兵, 张彦文, 孔令湖, 等. 中国锰矿资源现状与国家级锰矿床实物地质资料筛选[J]. 中国矿业, 2019,28(9):175-182.

    DENG W B, ZHANG Y W, KONG L H, et al. Status quo of manganese ore resources in China and screening of physical geological data of national manganese ore deposits[J]. China Mining Journal, 2019, 28(9): 175-182.
    [11] HUANG Y, CHEN G Y, TIAN Y M, et al. Main problems and countermeasures in China’s manganese industry[J]. Geology & Exploration, 2021,57(2):294-304. (黄屹, 陈广义, 田郁溟, 等. 中国锰业存在的主要问题及对策建议[J]. 地质与勘探, 2021,57(2):294-304.

    HUANG Y, CHEN G Y, TIAN Y M, et al. Main problems and countermeasures in China’s manganese industry[J]. Geology & Exploration, 2021, 57(2): 294-304.
    [12] HE H. Status quo of manganese ore resources and exploration and research of manganese ore[J]. China Manganese Industry, 2017,35(1):23-24. (何辉. 锰矿资源现状与锰矿勘察研究[J]. 中国锰业, 2017,35(1):23-24.

    HE H. Status quo of manganese ore resources and exploration and research of manganese ore[J]. China Manganese Industry, 2017, 35(1): 23-24.
    [13] DAI H X, ZHAO Z Q. Experimental study on beneficiation of a refractory manganese-iron symbiotic ore in Yunnan[J] Metal Mine, 2008 (2): 53-56, 65. (戴惠新, 赵志强. 云南某难选锰铁共生矿石选矿试验研究[J]. 金属矿山, 2008 (2): 53-56, 65.

    DAI H X, ZHAO Z Q. Experimental study on beneficiation of a refractory manganese-iron symbiotic ore in Yunnan[J] Metal Mine, 2008 (2): 53-56, 65.
    [14] GAO Y, LIU H J. Current status and potential prediction of manganese ore resources[J]. China Manganese Industry, 2020,38(2):1-5. (高艺, 刘宏杰. 锰矿资源现状及潜力预测[J]. 中国锰业, 2020,38(2):1-5.

    GAO Y, LIU H J. Current status and potential prediction of manganese ore resources[J]. China Manganese Industry, 2020, 38(2): 1-5.
    [15] ZHAO X G, FENG H Y, DU B H, et al. Challenges and coping strategies of China’s dependence on manganese ore resources[C]. 2023 China Joint Academic Conference of Earth Sciences, 2023. (赵旭光, 冯宏业, 杜保华, 等. 我国锰矿资源对外依赖的挑战与应对策略[C]. 2023年中国地球科学联合学术年会, 2023.

    ZHAO X G, FENG H Y, DU B H, et al. Challenges and coping strategies of China’s dependence on manganese ore resources[C]. 2023 China Joint Academic Conference of Earth Sciences, 2023.
    [16] DENG R D, LIU Q J, et al. Beneficiation of Fe-Mn minerals in Yunnan province[C]. Advanced Research On Information Science, Automation And Material Systems III, 2013.
    [17] ZHU D Q, LIU X Q, PAN J, et al. Study on separation process of ferromanganese reduced by melting of ferromanganese ore[J]. Metal Mine, 2017(3):59-64. (朱德庆, 刘新奇, 潘建, 等. 高铁锰矿熔融还原锰铁分离工艺研究[J]. 金属矿山, 2017(3):59-64. doi: 10.3969/j.issn.1001-1250.2017.03.012

    ZHU D Q, LIU X Q, PAN J, et al. Study on separation process of ferromanganese reduced by melting of ferromanganese ore[J]. Metal Mine, 2017(3): 59-64. doi: 10.3969/j.issn.1001-1250.2017.03.012
    [18] YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J]. Minerals Engineering, 2020, 152.
    [19] ANGGRAENI R D, PRASETYA A, PETRUS H T B M, et al. Performance of kulon progo low grade manganese ore leaching using acetic acid and its selectivity[C]. 2nd Mineral Processing and Technology International Conference, 2019.
    [20] WEN J, JIANG T, WANG J P, et al. An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings[J]. Journal of Hazardous Materials, 2019, 378.
    [21] WEN J, JIANG T, SUN H Y, et al. Novel understanding of simultaneous extraction of vanadium and manganese from vanadium slag and low-grade pyrolusite based on selective oxidation-reduction roasting[J]. Acs Sustainable Chemistry & Engineering, 2020, 5927-5936.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  21
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回