中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膜分离法回收沉钒废水中钒与铬

辛云涛 宋坤 王如成 田庆华

辛云涛, 宋坤, 王如成, 田庆华. 膜分离法回收沉钒废水中钒与铬[J]. 钢铁钒钛, 2025, 46(2): 19-25. doi: 10.7513/j.issn.1004-7638.2025.02.003
引用本文: 辛云涛, 宋坤, 王如成, 田庆华. 膜分离法回收沉钒废水中钒与铬[J]. 钢铁钒钛, 2025, 46(2): 19-25. doi: 10.7513/j.issn.1004-7638.2025.02.003
XIN Yuntao, SONG Kun, WANG Rucheng, TIAN Qinghua. Recovery of vanadium and chromium from vanadium precipitation wastewater by membrane separation technology[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 19-25. doi: 10.7513/j.issn.1004-7638.2025.02.003
Citation: XIN Yuntao, SONG Kun, WANG Rucheng, TIAN Qinghua. Recovery of vanadium and chromium from vanadium precipitation wastewater by membrane separation technology[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 19-25. doi: 10.7513/j.issn.1004-7638.2025.02.003

膜分离法回收沉钒废水中钒与铬

doi: 10.7513/j.issn.1004-7638.2025.02.003
基金项目: 国家科技部重点研发计划支持(2022YFC3901001)。
详细信息
    作者简介:

    辛云涛,1988年出生,男,河南民权人,博士,研究方向为稀散湿法冶金,E-mail:xinyuntao0707@163.com

    通讯作者:

    田庆华,1981年出生,男,四川宜宾人,博士,研究方向为资源循环与利用,稀散金属高纯制备,E-mail: qinghua@csu.edu.cn

  • 中图分类号: TF841.3

Recovery of vanadium and chromium from vanadium precipitation wastewater by membrane separation technology

  • 摘要: 为了从沉钒废水中回收有价金属钒、铬,采用乙二胺四乙酸(EDTA)络合配合膜分离法对沉钒废水进行处理。研究了络合效果、膜的种类、水通量、压力差等参数对于钒、铬回收效果的影响规律。结果表明,当EDTA摩尔比为1.5时,采用NF5纳滤膜在0.8 MPa下过滤3次,钒、铬的截留率分别为99.88%和99.97%,浓缩液中的钒、铬浓度为24.97 g/L和2.499 g/L,实现了沉钒废水中钒、铬的有效回收。透过液中的钒、铬含量分别为0.573 mg/L和0.015 mg/L,可以达到工业废水排放标准。DLS、SEM和AFM分析结果表明,采用EDTA络合配合膜分离技术可以有效地回收溶液中的钒、铬。
  • 图  1  工艺流程示意

    Figure  1.  Schematic diagram of the process flow

    图  2  EDTA添加量对回收率的影响

    Figure  2.  Effect of EDTA addition on the recovery rate

    图  3  不同膜对回收率的影响

    Figure  3.  Effect of different membranes on recovery rate

    图  4  水通量对回收率的影响

    Figure  4.  Effect of water flux on recovery rate

    图  5  压力对回收率的影响

    Figure  5.  Effect of pressure on recovery rate

    图  6  过滤次数对回收率的影响

    Figure  6.  Effect of number of filtration on recovery rate

    图  7  膜的使用次数对回收率的影响

    Figure  7.  Effect of number of membrane application on the recovery rate

    图  8  纳滤分离颗粒粒径及zeta电位的特征

    (a)浓缩液粒径分布; (b)透过液粒径分布; (c)浓缩液和透过液的Zeta电位; (d)纳滤膜表面的Zeta电位

    Figure  8.  Characterization of particle size and zeta potential of nanofiltration

    图  9  浓缩液络合物结晶特征及膜表面变化

    (a)络合物的XRD; (b)络合物的SEM; (c)纳滤膜过滤前的SEM; (d) 纳滤膜过滤后的SEM; (e)纳滤膜过滤前的AFM; (f)纳滤膜过滤后的AFM

    Figure  9.  Complex crystallization characteristics and membrane surface change

  • [1] SONG K, SU H, LIU M, et al. A novel ammonium-free vanadium precipitation process for the integrated actions of ascorbic acid reduction and enhanced hydrolysis under hydrothermal influence[J]. Journal of Environmental Chemical Engineering, 2024,12(2):111842. doi: 10.1016/j.jece.2023.111842
    [2] SONG C. Study on comprehensive utilization of chromium-bearing vanadium residue[D]. Changsha: Central South University, 2012. (宋超. 含铬钒渣的综合利用研究[D]. 长沙: 中南大学, 2012.

    SONG C. Study on comprehensive utilization of chromium-bearing vanadium residue[D]. Changsha: Central South University, 2012.
    [3] TENG A J, XU H H, XUE X X. Clean roasting process for treating vanadium slag by using binary sodium salts system[J]. Journal of Northeastern University Nature Science, 2019,40(9):1291-1297. (滕艾均, 徐红红, 薛向欣. 利用二元钠盐体系处理钒渣的清洁焙烧工艺[J]. 东北大学学报(自然科学版), 2019,40(9):1291-1297. doi: 10.12068/j.issn.1005-3026.2019.09.014

    TENG A J, XU H H, XUE X X. Clean roasting process for treating vanadium slag by using binary sodium salts system[J]. Journal of Northeastern University Nature Science, 2019, 40(9): 1291-1297. doi: 10.12068/j.issn.1005-3026.2019.09.014
    [4] WEN J, JIANG T, ZHENG X, et al. Efficient separation of chromium and vanadium by calcification roasting–sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation[J]. Separation and Purification Technology, 2020, 230, 115881.
    [5] YANG S Z. Metallurgy of vanadium[M]. Metallurgical Industry Press, 2010. (杨守志. 钒冶金[M]. 冶金工业出版社, 2010.

    YANG S Z. Metallurgy of vanadium[M]. Metallurgical Industry Press, 2010.
    [6] SHI Q, ZHANG Y, LIU T, et al. Recycling of ammonia wastewater during vanadium extraction from shale[J]. JOM, 2018,70(10):1991-1996. doi: 10.1007/s11837-018-2800-9
    [7] ALEMANY L J, LARRUBIA M A, BLASCO J M. A new use of boiler ash: recovery of vanadium as a catalytic VPO system[J]. Fuel, 1998,77(15):1735-1740. doi: 10.1016/S0016-2361(98)00111-2
    [8] LIU C. Study on preparation of electrolyte for vanadium redox now battery with short process from sodium—polyvanadate precipitated wastewater by solvent extraction[D]. Wuhan: Wuhan University of Science and Technology, 2020. (刘聪. 从沉钒废水中萃取法短流程制备钒电池电解液的研究[D]. 武汉: 武汉科技大学, 2020.

    LIU C. Study on preparation of electrolyte for vanadium redox now battery with short process from sodium—polyvanadate precipitated wastewater by solvent extraction[D]. Wuhan: Wuhan University of Science and Technology, 2020.
    [9] LIU Z S, ZHANG Y M, DAI Z L, et al. Recovery of vanadium from vanadium-bearing wastewater of vanadium-titanium magnetite with solvent extraction by N235[J]. Nonferrous Metals (Extractive Metallurgy), 2019(11):87-92. (刘子帅, 张一敏, 戴子林, 等. N235萃取法从钒钛磁铁矿沉钒废水中回收钒[J]. 有色金属(冶炼部分), 2019(11):87-92.

    LIU Z S, ZHANG Y M, DAI Z L, et al. Recovery of vanadium from vanadium-bearing wastewater of vanadium-titanium magnetite with solvent extraction by N235[J]. Nonferrous Metals (Extractive Metallurgy), 2019(11): 87-92.
    [10] XU C G, WANG H L, YANG H. Recovery of vanadium and chromium from industrial vanadium precipitation wastewater[C]. The 25th National Ferroalloy Symposium, 2017, 402-404. (许崇光, 王海林, 杨欢. 工业沉钒废水中回收钒铬之我见[C]. 第25届全国铁合金学术研讨会论文集(下册), 2017, 402-404.

    XU C G, WANG H L, YANG H. Recovery of vanadium and chromium from industrial vanadium precipitation wastewater[C]. The 25th National Ferroalloy Symposium, 2017, 402-404.
    [11] ZHANG H, LI P, ZHANG X, et al. Removal of vanadium and chromium from vanadium wastewaters with amino-functionalized γ-AlOOH [J]. Hydrometallurgy, 2022, 210, 105841.
    [12] MA R, FENG Y, LI H, et al. Deep-sea microorganisms-driven V5+ and Cd2+ removal from vanadium smelting wastewater: Bacterial screening, performance and mechanism[J]. Environmental Pollution, 2024, 360, 124599.
    [13] LI S, HU P, ZHANG Y, et al. Comprehensive recovery of valuable elements from vanadium precipitation liquor using selective impurity removal-reduction precipitation process[J]. Journal of Cleaner Production, 2024, 467, 143013.
    [14] REN J, LUO J H, HAN H Z. Research on the application of membrane separation technology in water treatment[M]. Press of Beijing University of Technology, 2022. (任静, 罗锦洪, 韩海忠. 膜分离技术在水处理中的应用研究 [M]. 北京工业大学出版社, 2022.

    REN J, LUO J H, HAN H Z. Research on the application of membrane separation technology in water treatment[M]. Press of Beijing University of Technology, 2022.
    [15] YANG H. Research on membrane separation technology in industrial wastewater treatment[J]. Chinese Science and Technology Journal Database (Citation Edition) Engineering Technology, 2024(3):128-131. (杨恒. 工业废水处理中膜分离技术的研究[J]. 中文科技期刊数据库(引文版)工程技术, 2024(3):128-131.

    YANG H. Research on membrane separation technology in industrial wastewater treatment[J]. Chinese Science and Technology Journal Database (Citation Edition) Engineering Technology, 2024(3): 128-131.
    [16] WANG Y. Current situation of the vanadium precipitating waste water treatment technology[J]. Ferro-alloys, 2012,43(6):41-45. (王英. 沉钒废水处理技术的研究现状[J]. 铁合金, 2012,43(6):41-45. doi: 10.3969/j.issn.1001-1943.2012.06.012

    WANG Y. Current situation of the vanadium precipitating waste water treatment technology[J]. Ferro-alloys, 2012, 43(6): 41-45. doi: 10.3969/j.issn.1001-1943.2012.06.012
    [17] LAZARIDIS N K, JEKEL M, ZOUBOULIS A I. Removal of Cr(Ⅵ), Mo(Ⅵ), and V(Ⅴ) ions from single metal aqueous solutions by sorption or nanofiltration[J]. Separation Science and Technology, 2003,38(10):2201-19. doi: 10.1081/SS-120021620
    [18] SHANG G, ZHANG G, GAO C, et al. A novel nanofiltration process for the recovery of vanadium from acid leach solution[J]. Hydrometallurgy, 2014, 142(9): 4-7.
    [19] LU M L, LI J J. Industrial application of vanadium-chromium recovery process for V2O5 production wastewater[J]. The Second Vanadium and Titanium Technology Exchange Meeting between Hebei, Anhui and Sichuan in 2007, 2007. (卢明亮, 李九江. V2O5生产废水钒铬回收工艺的工业应用. 2007年度冀、皖、川第二届钒钛技术交流会, 2007.

    LU M L, LI J J. Industrial application of vanadium-chromium recovery process for V2O5 production wastewater[J]. The Second Vanadium and Titanium Technology Exchange Meeting between Hebei, Anhui and Sichuan in 2007, 2007.
  • 加载中
图(9)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  18
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-07
  • 刊出日期:  2025-05-06

目录

    /

    返回文章
    返回