Research progress on electrolytic extraction and purification of titanium and vanadium molten salts
-
摘要: 钛和钒作为重要的战略性金属,其传统火法或湿法提取和纯化工艺存在效率低、能耗大、成本高等共性问题。熔盐电解技术以其工艺流程短、产品纯度高、绿色环保等优势,为钛、钒的提取与纯化提供了新思路。文中对熔盐电解提取和纯化钛与钒的最新研究进展进行了综述,分析了卤化物熔盐电解、FFC法、USTB法的优缺点与应用潜力,讨论了熔盐体系中钛和钒的电化学行为及工艺参数优化策略。未来,在设备材料耐腐蚀性、电流效率提升及工业化规模化应用方面,钛和钒的熔盐电解技术仍需进一步探索。Abstract: As important strategic metals, titanium and vanadium have some common problems such as low efficiency, high energy consumption and high cost in traditional fire or wet extraction and purification processes. Molten salt electrolysis technology provides a new idea for the extraction and purification of titanium and vanadium with its advantages of short process, high product purity and green environmental protection. In this paper, the latest research progress in the extraction and purification of titanium and vanadium by molten salt electrolysis was reviewed. The advantages and disadvantages and application potential of halides molten salts electrolysis, FFC method and USTB method were analyzed. The electrochemical behavior of titanium and vanadium in molten salt systems and the optimization strategy of process parameters were discussed. In the future, in terms of corrosion resistance of equipment materials, current efficiency improvement, and industrial scale application, the molten salt electrolysis technology of titanium and vanadium still needs to be further explored.
-
Key words:
- molten salt electrolysis /
- titanium /
- vanadium /
- extraction /
- purification
-
表 1 传统熔盐电解法、FFC、USTB法提取金属钛、钒的纯度及生产规模统计
Table 1. The purity of titanium and vanadium extracted by traditional molten salt electrolysis method, FFC and USTB method and the expanded scale statistics
-
[1] LIU S Y, WANG L J, CHEN J, et al. Research progress of vanadium extraction processes from vanadium slag: A review[J]. Separation and Purification Technology, 2024,342:127035. doi: 10.1016/j.seppur.2024.127035 [2] HAYES F H, BOMBERGER H B, FROES F H, et al. Advances in titanium extraction metallurgy[J]. Jom, 1984,36(6):70-76. doi: 10.1007/BF03338480 [3] TAKEDA O, OUCHI T, OKABE T H. Recent progress in titanium extraction and recycling[J]. Metallurgical and Materials Transactions B, 2020,51:1315-1328. doi: 10.1007/s11663-020-01898-6 [4] WANG Z G, ZHENG S L, WANG S N, et al. Electrochemical decomposition of vanadium slag in concentrated NaOH solution[J]. Hydrometallurgy, 2015,151:51-55. doi: 10.1016/j.hydromet.2014.10.017 [5] QIN Z F, ZHANG G Q, LUO D M, et al. Separation of titanium from vanadium and iron in leach solutions of vanadium slag by solvent extraction with trioctyl tertiary amine (N235)[J]. Hydrometallurgy, 2019,188:216-221. doi: 10.1016/j.hydromet.2019.07.004 [6] ZHANG Y, FANG Z G, XIA Y, et al. A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag[J]. Chemical Engineering Journal, 2016,286:517-527. doi: 10.1016/j.cej.2015.10.090 [7] CHEN G Z, FRAY D J, FARTHING T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000,407(6802):361-364. doi: 10.1038/35030069 [8] JIAO S Q, ZHU H M. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2[J]. Journal of Alloys and Compounds, 2007,438(1):243-246. [9] ZHU H M, JIAO S Q, GU X F. Method for producing pure titanium by anode electrolysis of titanium monoxide/titanium carbide soluble solid solution: CN1712571[P]. 2005-12-28. (朱鸿民, 焦树强, 顾学范. 一氧化钛/碳化钛可溶性固溶体阳极电解生产纯钛的方法: 中国, 1712571[P]. 2005-12-28.ZHU H M, JIAO S Q, GU X F. Method for producing pure titanium by anode electrolysis of titanium monoxide/titanium carbide soluble solid solution: CN1712571[P]. 2005-12-28. [10] SONG J X. Electrochemical behavior of titanium ions in alkali chloride molten salts[D]. Beijing: University of Science and Technology Beijing, 2015. (宋建勋. 碱金属氯化物熔盐中钛离子电化学行为研究[D]. 北京: 北京科技大学, 2015.SONG J X. Electrochemical behavior of titanium ions in alkali chloride molten salts[D]. Beijing: University of Science and Technology Beijing, 2015. [11] ZHU H M, JIAO S Q, NING X H. New metallurgical technology of titanium[J]. Materials Progress in China, 2011,30(6):37-43. (朱鸿民, 焦树强, 宁晓辉. 钛金属新型冶金技术[J]. 中国材料进展, 2011,30(6):37-43.ZHU H M, JIAO S Q, NING X H. New metallurgical technology of titanium[J]. Materials Progress in China, 2011, 30(6): 37-43. [12] GINATTA M V, ORSELLO G, BERRUTI R. Method and cell for the electrolytic production of a polyvalent metal: US07/340356[P]. 1991-05-14. [13] GINATTA M V. Economics and production of primary titanium by electrolytic winning; proceedings of the EPD Congress, F, 2001[C]. [14] ZHAO K, WANG Y W, GAO F. Electrochemical extraction of titanium from carbon-doped titanium dioxide precursors by electrolysis in chloride molten salt[J]. Ionics, 2019,25(12):6107-6114. doi: 10.1007/s11581-019-03149-4 [15] JIAO H D. Electrode processes of titanium ions on liquid metal cathodes[D]. Beijing: University of Science and Technology Beijing, 2019. (焦汉东. 钛离子在液态金属阴极上的电极过程[D]. 北京: 北京科技大学, 2019.JIAO H D. Electrode processes of titanium ions on liquid metal cathodes[D]. Beijing: University of Science and Technology Beijing, 2019. [16] LIU Y X, YAN H W, LIU Z W, et al. Feasibility study on direct electrolysis of titanium in NaF-K2TiF6-TiO2 system[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2021,46(5):9-15. (刘瑛鑫, 颜恒维, 刘战伟, 等. NaF-K2TiF6-TiO2体系中直接电解制备钛的可行性研究[J]. 昆明理工大学学报(自然科学版), 2021,46(5):9-15.LIU Y X, YAN H W, LIU Z W, et al. Feasibility study on direct electrolysis of titanium in NaF-K2TiF6-TiO2 system[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2021, 46(5): 9-15. [17] YANG Y H, YAN H W, YANG G. Study on preparation of titanium metal by electrolysis of molten salt in fluoride system[J]. Light Metal, 2023(2):40-45. (杨永辉, 颜恒维, 杨光. 氟化物体系中熔盐电解制备金属钛的研究[J]. 轻金属, 2023(2):40-45.YANG Y H, YAN H W, YANG G. Study on preparation of titanium metal by electrolysis of molten salt in fluoride system[J]. Light Metal, 2023(2): 40-45. [18] WENG W, WANG M Y, GONG X Z, et al. One-step electrochemical preparation of metallic vanadium from sodium metavanadate in molten chlorides[J]. International Journal of Refractory Metals and Hard Materials, 2016,55:47-53. doi: 10.1016/j.ijrmhm.2015.11.007 [19] XU Y, JIAO H D, WANG M Y, et al. Direct preparation of V-Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode[J]. Journal of Alloys and Compounds, 2019,779:22-29. doi: 10.1016/j.jallcom.2018.11.232 [20] GUSSONE J, VIJAY C R Y, HAUBRICH J, et al. Effect of vanadium ion valence state on the deposition behaviour in molten salt electrolysis[J]. Journal of Applied Electrochemistry, 2018,48(4):427-434. doi: 10.1007/s10800-018-1165-7 [21] LIU S Y, WANG L J, CHOU K C, et al. Electrolytic preparation and characterization of VCr alloys in molten salt from vanadium slag[J]. Journal of Alloys and Compounds, 2019,803:875-881. doi: 10.1016/j.jallcom.2019.06.366 [22] BECKER R, SAWODNY W. Vibrational spectra and force constants of potassium-hexafluoro-vanadates[J]. Zeitschrift für Naturforschung B, 1973(28):360-362. [23] WENG W, JIANG B M, WANG Z, et al. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions[J]. Science Advances, 2020,6(9):eaay9278. doi: 10.1126/sciadv.aay9278 [24] FRAY D J, CHEN G Z Reduction of titanium and other metal oxides using electrodeoxidation[J]. Materials Science and Technology, 2004, 20(3): 295-300. [25] XIAO W, JIN X B, DENG Y, et al. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl[J]. Chemistry–A European Journal, 2007,13(2):604-612. doi: 10.1002/chem.200600172 [26] CHEN G Z, GORDO E, FRAY D J. Direct electrolytic preparation of chromium powder[J]. Metallurgical and Materials Transactions B, 2004,35(2):223-233. doi: 10.1007/s11663-004-0024-6 [27] BHAGAT R, JACKSON M, INMAN D, et al. Production of Ti–W alloys from mixed oxide precursors via the FFC cambridge process[J]. Journal of The Electrochemical Society, 2009,156(1):E1. doi: 10.1149/1.2999340 [28] MENG X H, ZHAO H M, BI S, et al. Electrochemical mechanism of molten salt electrolysis from TiO2 to titanium[J]. Materials, 2022, 15(11). [29] YANG F, LIU Y, YE J W, et al. Preparation of titanium through the electrochemical reducing Ti4O7 in molten calcium chloride[J]. Materials Letters, 2018,233:28-30. [30] SCHWANDT C, FRAY D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride[J]. Electrochimica Acta, 2005,51(1):66-76. doi: 10.1016/j.electacta.2005.03.048 [31] MISHRA B, OLSON D L. Molten salt applications in materials processing[J]. Journal of Physics and Chemistry of Solids, 2005,66(2):396-401. [32] WANG S L, LI Y J. Reaction mechanism of direct electro-reduction of titanium dioxide in molten calcium chloride[J]. Journal of Electroanalytical Chemistry, 2004,571(1):37-42. doi: 10.1016/j.jelechem.2004.04.010 [33] PAL U B, WOOLLEY D E, KENNEY G B. Emerging SOM technology for the green synthesis of metals from oxides[J]. Jom, 2001,53(10):32-35. doi: 10.1007/s11837-001-0053-4 [34] ZHANG N, LI L J, DONG Z H, et al. Preparation of titanium[J]. Hebei Metallurgy, 2020(5):37-40. (张娜, 李兰杰, 董自慧, 等. 金属钛的制备研究[J]. 河北冶金, 2020(5):37-40.ZHANG N, LI L J, DONG Z H, et al. Preparation of titanium[J]. Hebei Metallurgy, 2020(5): 37-40. [35] SUZUKI R O, ISHIKAWA H. Direct reduction of vanadium oxide in molten CaCl2: Proceedings of the Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, F, 2008[C]. [36] WANG S L, LI S C, WAN L F, et al. Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO[J]. International Journal of Minerals, Metallurgy, and Materials, 2012,19(3):212-216. doi: 10.1007/s12613-012-0540-3 [37] CAI Z F, ZHANG Z M, GUO Z C, et al. Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2-NaCl[J]. International Journal of Minerals, Metallurgy, and Materials, 2012,19(6):499-505. doi: 10.1007/s12613-012-0586-2 [38] KONG Y P, CHEN J S, LI B C, et al. Electrochemical reduction of porous vanadium trioxide precursors in molten fluoride salts[J]. Electrochimica Acta, 2018,263:490-498. doi: 10.1016/j.electacta.2018.01.068 [39] KONG Y P, LI B C, CHEN J S, et al. Electrochemical reduction of vanadium sesquioxide in low-temperature molten fluoride salts[J]. Electrochimica Acta, 2020,342:136081. doi: 10.1016/j.electacta.2020.136081 [40] ZHU H M, XIAO J S, JIAO S Q, et al. Production cost of titanium metal smelting and possibility of new titanium metallurgy process[J]. Iron Steel Vanadium Titanium, 2021, 42(03): 10-16. (朱鸿民, 肖九三, 焦树强, 等. 钛金属冶炼的生产成本以及新型钛冶金工艺的可能性[J]. 钢铁钒钛, 2021, 42(3): 10-16.ZHU H M, XIAO J S, JIAO S Q, et al. Production cost of titanium metal smelting and possibility of new titanium metallurgy process[J]. Iron Steel Vanadium Titanium, 2021, 42(03): 10-16. [41] NING X H, XIAO J S, JIAO S Q, et al. Anodic dissolution of titanium oxycarbide TiCxO1-x with different O/C ratio[J]. Journal of The Electrochemical Society, 2019,166(2):E22-E28. doi: 10.1149/2.0141902jes [42] AN J L, WANG M Y, JIA Y Z, et al. Facile preparation of metallic vanadium from consumable V2CO solid solution by molten salt electrolysis[J]. Separation and Purification Technology, 2022, 295. [43] ZHU H, WANG H, TAN C P, et al. Research progress on application and preparation of high purity titanium[J]. Materials Review: 1-38. (朱灏, 汪浩, 檀成鹏, 等. 高纯度钛的应用与制备研究进展[J]. 材料导报: 1-38.ZHU H, WANG H, TAN C P, et al. Research progress on application and preparation of high purity titanium[J]. Materials Review: 1-38. [44] SEQUEIRA C A C. Chronopoteniometric study of titanium in molten NaCl+KCl+K2TiF6[J]. Journal of Electroanalytica Chemistry, 1988,239(1-2):203-208. doi: 10.1016/0022-0728(88)80280-8 [45] LI Z, GUO R M. Preparation and development direction of high purity titanium[J]. Titanium Industry Progress, 1997(3):8-11. (李哲, 郭让民. 高纯钛的制备及其发展方向[J]. 钛工业进展, 1997(3):8-11.LI Z, GUO R M. Preparation and development direction of high purity titanium[J]. Titanium Industry Progress, 1997(3): 8-11. [46] SONG J X, HUANG X X, WU J Y, et al. Electrochemical behaviors of Ti(III) in molten NaCl-KCl under various contents of fluoride[J]. Electrochimica Acta, 2017,256:252-258. doi: 10.1016/j.electacta.2017.10.058 [47] LIU S S, LI S L, LIU C H, et al. Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl[J]. International Journal of Minerals, Metallurgy and Materials, 2023,30(5):868-876. doi: 10.1007/s12613-022-2527-z [48] YUAN R, LÜ C, WAN H L, et al. Electrochemical behavior of vanadium ions in molten LiCl-KCl[J]. Journal of Electroanalytical Chemistry, 2021,891:115259. doi: 10.1016/j.jelechem.2021.115259 [49] KADO Y, KISHIMOTO A, UDA T. New smelting process for titanium: magnesiothermic reduction of TiCl4 into liquid Bi and subsequent refining by vacuum distillation[J]. Metallurgical and Materials Transactions B, 2014,46(1):57-61. [50] RI V E, YOO B U, NERSISYAN H, et al. Carbon-free recovery route for pure Ti: CuTi-alloy electrorefining in a K-free molten salt[J]. ACS Sustainable Chemistry & Engineering, 2023,11(4):1414-1427. [51] KUMAR T P, CHANDER S J, NADUVIL H K, et al. Electrorefining of carbonitrothermic vanadium in a fused salt electrolytic bath[J]. Journal of Materials Chemistry, 2001,11(10):2513-2518. doi: 10.1039/b102992b [52] LEI K P V, SULLIVAN T A. Electrorefining of vanadium prepared by carbothermic reduction of V2O5[J]. Metallurgical and Materials Transactions B, 1971,2(8):2312-2314. [53] LEI K P V, SULLIVAN T A. High-purity vanadim[J]. Journal of the Less Common Metals, 1968,14(1):145-147. doi: 10.1016/0022-5088(68)90212-9 [54] POLOVOV I B, CHERNYSHOV M V, VOLKOVICH V A et al. Vanadium electrorefining in NaCl–KCl–VCl2 melts[J]. ECS Transactions, 2018,86(14):37. doi: 10.1149/08614.0037ecst -