留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回火温度对淬火后1500 MPa级热成形钢力学性能和组织的影响

王子健 黄伟 彭则 梁肖 邓建林

王子健, 黄伟, 彭则, 梁肖, 邓建林. 回火温度对淬火后1500 MPa级热成形钢力学性能和组织的影响[J]. 钢铁钒钛, 2024, 45(6): 172-176. doi: 10.7513/j.issn.1004-7638.2024.06.023
引用本文: 王子健, 黄伟, 彭则, 梁肖, 邓建林. 回火温度对淬火后1500 MPa级热成形钢力学性能和组织的影响[J]. 钢铁钒钛, 2024, 45(6): 172-176. doi: 10.7513/j.issn.1004-7638.2024.06.023
Wang Zijian, Huang Wei, Peng Ze, Liang Xiao, Deng Jianlin. Effect of tempering temperature on the mechanical properties and microstructures of 1500 MPa hot stamping steel after quenching[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 172-176. doi: 10.7513/j.issn.1004-7638.2024.06.023
Citation: Wang Zijian, Huang Wei, Peng Ze, Liang Xiao, Deng Jianlin. Effect of tempering temperature on the mechanical properties and microstructures of 1500 MPa hot stamping steel after quenching[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 172-176. doi: 10.7513/j.issn.1004-7638.2024.06.023

回火温度对淬火后1500 MPa级热成形钢力学性能和组织的影响

doi: 10.7513/j.issn.1004-7638.2024.06.023
基金项目: 国家自然科学基金青年基金项目(51905189);国家科技重大专项项目(2018ZX04023001)。
详细信息
    作者简介:

    王子健,1989年出生,男,湖北荆州人,博士,主要研究方向:高强钢热冲压成形工艺,E-mail:wangzijian@suda.edu.cn

    通讯作者:

    黄伟,1998年出生,男,江西南昌人,硕士研究生,主要研究方向:钢铁材料组织性能优化,E-mail:707708810@qq.com

  • 中图分类号: TF76,TG156

Effect of tempering temperature on the mechanical properties and microstructures of 1500 MPa hot stamping steel after quenching

  • 摘要: 针对1 500 MPa级热成形钢进行淬火和回火处理,利用金相显微镜、室温拉伸检测和扫描电镜等方法研究回火温度对材料显微组织和力学性能的影响。结果表明:Cr含量过高,会降低C的活度,抑制渗碳体的形成,因此钢中主要碳化物为M23C6和M7C3类,随着回火温度提高到400 ℃左右,碳化物会由M23C6类转化为M7C3类;抗拉强度、屈服强度和硬度随着回火温度的升高逐渐降低,当回火温度超过400 ℃之后强度会显著降低,延伸率随着回火温度的升高逐渐升高,而强塑积随着回火温度的升高呈现先增大后减小的趋势;板条马氏体中存在的高密度位错会随着回火温度的升高而下降,马氏体板条会相互吞噬、合并,逐渐模糊,基体中出现铁素体,此外碳化物也会析出并长大。
  • 图  1  拉伸试样尺寸(单位:mm)

    Figure  1.  Dimensions of tensile specimens

    图  2  试验钢平衡相图

    Figure  2.  Equilibrium phase diagram of the experimental steel

    图  3  试样回火后力学性能

    (a)抗拉强度、屈服强度和延伸率;(b)硬度和强塑积

    Figure  3.  Mechanical properties of the samples after tempering

    图  4  淬火后金相组织形貌

    Figure  4.  Metallographic diagram after quenching

    图  5  淬火后SEM形貌

    Figure  5.  SEM image after quenching

    图  6  不同回火温度金相图

    Figure  6.  Metallographic diagrams of different tempering temperatures

    (a)200 ℃;(b)300 ℃;(c)400 ℃;(d)500 ℃

    图  7  不同回火温度SEM形貌

    Figure  7.  SEM images of different tempering temperatures

    (a)200 ℃;(b)300 ℃;(c)400 ℃;(d)500 ℃

    图  8  不同回火温度下碳化物尺寸

    Figure  8.  Carbide sizes at different tempering temperatures

    (a)200 ℃;(b)300 ℃;(c)400 ℃;(d)500 ℃

  • [1] Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations[J]. Journal of Materials Processing Technology , 2006, 177(1-3): 396-400.
    [2] Nikravesh M, Naderi M, Akbari G H. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel[J]. Materials Science and Engineering: A, 2012,540:24-29. doi: 10.1016/j.msea.2012.01.018
    [3] Song Ninghong, Lin Chao, Bi Wenzhen, et al. The effect of tempering time on the microstructure and properties of 1800 MPa hot formed steel[J]. Metal Heat Treatment, 2022,47(08):112-117. (宋宁宏, 林超, 毕文珍, 等. 回火时间对1800 MPa级热成形钢组织和性能的影响[J]. 金属热处理, 2022,47(8):112-117.

    Song Ninghong, Lin Chao, Bi Wenzhen, et al. The effect of tempering time on the microstructure and properties of 1800 MPa hot formed steel[J]. Metal Heat Treatment, 2022, 47(08): 112-117.
    [4] Xu Dechao, Zhao Haifeng, Li Xuetao, et al. The effect of tempering temperature on the microstructure and properties of quenched 22MnB5 hot formed steel[J]. Journal of Materials Heat Treatment, 2018,39(8):88-94. (徐德超, 赵海峰, 李学涛, 等. 回火温度对淬火22MnB5热成形钢组织及性能的影响[J]. 材料热处理学 报, 2018,39(8):88-94.

    Xu Dechao, Zhao Haifeng, Li Xuetao, et al. The effect of tempering temperature on the microstructure and properties of quenched 22MnB5 hot formed steel[J]. Journal of Materials Heat Treatment, 2018, 39(8): 88-94.
    [5] Cheng Junye, Zhao Aimin, Chen Yinli, et al. Effect of tempering temperature on the microstructure and properties of quenched 30MnB5 hot formed steel[J]. Journal of Beijing University of Science and Technology, 2013,35(9):1150-1157. (程俊业, 赵爱民, 陈银莉, 等. 回火温度对淬火后30MnB5热成形钢组织与性能影响[J]. 北京科技大学学报, 2013,35(9):1150-1157.

    Cheng Junye, Zhao Aimin, Chen Yinli, et al. Effect of tempering temperature on the microstructure and properties of quenched 30MnB5 hot formed steel[J]. Journal of Beijing University of Science and Technology, 2013, 35(9): 1150-1157.
    [6] Liu Cheng, Zhao Zhenbo, Northwood Derek O, et al. A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels[J]. Journal of Materials Processing Technology, 2001,113(1-3):556-562. doi: 10.1016/S0924-0136(01)00625-2
    [7] Trzaska J. Calculation of critical temperatures by empirical formulae[J]. Archives of Metallurgy and Materials, 2016,61(2):981-986. doi: 10.1515/amm-2016-0167
    [8] Sabih A, Elwazri A M, Nemes J A, et al. A workability criterion for the transformed adiabatic shear band phenomena during cold heading of 1038 steel[J]. Journal of Failure Analysis and Prevention, 2006,6:97-105. doi: 10.1007/BF03197706
    [9] Daniel Alexandre da Costa Ximenes, Luciano Pessanha Moreira, José Eduardo Ribeiro de Carvalho, et al. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions[J]. Journal of Materials Research and Technology, 2020,9(1):629-635. doi: 10.1016/j.jmrt.2019.11.003
    [10] Wang Lijun, Cai Qingwu, Wu Huibin, et al. Effect of tempering temperature on the microstructure and properties of 1500 MPa grade directly quenched steel[J]. Journal of Beijing University of Science and Technology, 2010, 32 (9):1150-1156. (王立军, 蔡庆伍, 武会宾, 等. 回火温度对1500 MPa级直接淬火钢组织与性能的影响[J]. 北京科技大学学报, 2010, 32(9):1150-1156.

    Wang Lijun, Cai Qingwu, Wu Huibin, et al. Effect of tempering temperature on the microstructure and properties of 1500 MPa grade directly quenched steel[J]. Journal of Beijing University of Science and Technology, 2010, 32 (9): 1150-1156.
    [11] Liu Yazheng. Fundamentals of material forming theory[M]. Beijing: National Defense Industry Press, 2004:326. (刘雅政. 材料成形理论基础[M]. 北京: 国防工业出版社, 2004:326.

    Liu Yazheng. Fundamentals of material forming theory[M]. Beijing: National Defense Industry Press, 2004: 326.
    [12] Chi Hongxiao, Ma Dangsheng, Xu Huiya, et al. Phase transformation of a cold work tool steel during tempering[J]. Journal of Iron and Steel Research, International, 2016(5):484-488.
    [13] Liu Qingdong, Liu Wenqing, Wang Zemin, et al. 3D atomic probe characterization of alloy carbides in tempered martensite I Nucleation [J] Journal of Metals, 2009, 45 (11): 1281-1287. (刘庆冬, 刘文庆, 王泽民, 等. 回火马氏体中合金碳化物的 3D 原子探针表征Ⅰ. 形核[J]. 金属学报, 2009, 45(11): 1281-1287.

    Liu Qingdong, Liu Wenqing, Wang Zemin, et al. 3D atomic probe characterization of alloy carbides in tempered martensite I Nucleation [J] Journal of Metals, 2009, 45 (11): 1281-1287.
  • 加载中
图(8)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回