Study on the inclusion distribution behavior of U71Mn heavy rail steel after rolling
-
摘要: 非金属夹杂物的形态和分布对重轨钢的性能具有显著影响。采用光学显微镜、扫描电镜、夹杂物三维刻蚀仪、Thermo-calc软件对某厂生产的U71Mn重轨钢中的夹杂物进行了研究。结果表明,U71Mn重轨钢中轨腰处夹杂物的平均等效直径、长宽比最大,数量密度最小。轨头、轨腰、轨底的夹杂物密度分别为18、12、14 个/mm2,平均等效直径分别为2.5 、2.7、2.4 μm,平均长宽比分别为7.4、13.3、6.4。钢中夹杂物以单独存在的MnS和CaO·Al2O3·SiO2·MgO复合夹杂物为主。轨头和轨底处的MnS尺寸较小,集中分布在10~50 μm;轨腰处的MnS夹杂物尺寸较大,多在20~80 μm,且存在多条大尺寸的MnS被轧制在同一条水平线上。CaO·Al2O3·SiO2·MgO复合夹杂物沿轧制方向普遍呈近球形和不规则形。Abstract: The morphology and distribution of non-metallic inclusions significantly affect the performance of heavy rail steels. This study employed optical microscopy, scanning electron microscopy, a three-dimensional etching instrument for inclusions, and Thermo-calc software to investigate the inclusions in U71Mn heavy rail steel produced by a certain factory. The results show that the average equivalent diameter and aspect ratio of inclusions at the waist of the U71Mn heavy rail steel are the largest, while the number density is the smallest. The inclusion densities in the rail head, waist, and base are 18, 12, and 14/mm2, respectively, with the average equivalent diameters of 2.5, 2.7, and 2.4 μm, and the average aspect ratios of 7.4, 13.3, and 6.4, respectively. The main inclusions in the steel are individual MnS and complex inclusions of CaO·Al2O3·SiO2·MgO. The sizes of MnS at the rail head and base are relatively small, mainly distributed between 10~50 μm. The sizes of MnS inclusions at the rail waist are larger, mostly between 20~80 μm, with several large-sized MnS rolled on the same horizontal line. The complex inclusions of CaO·Al2O3·SiO2·MgO generally appear near-spherical or irregular along the rolling direction.
-
Key words:
- U71Mn heavy rail steel /
- inclusions /
- rolling deformation /
- thermodynamic analysis
-
表 1 U71Mn重轨钢化学成分
Table 1. U71Mn heavy rail steel composition
% C Si Mn P S Al Ca V O Fe 0.73 0.35 0.95 0.012 0.002 0.003 0.0012 0.004 0.0009 余量 -
[1] Bai Guojun, Yang Jichun, Liang Wenjing. Evaluation and analysis of the influence of rare-earth ce on inclusions in heavy rail steel[J]. Metals, 2023,13(3):614. doi: 10.3390/met13030614 [2] Fei Junjie, Zhou Guifeng, Zhou Jianhua, et al. Research on the effect of pearlite lamellar spacing on rolling contact wear behavior of U75V rail steel[J]. Metals, 2023,13(2):237. doi: 10.3390/met13020237 [3] Wang Yi, Li Changrong, Wang Linzhu, et al. Modification of alumina inclusions in SWRS82B steel by adding rare earth cerium[J]. Metals, 2020,10(12):1696. doi: 10.3390/met10121696 [4] Yang Guang, Yang Wen, Zhang Lifeng, Modification of inclusion calcium in aluminum-killed steel and its influencing factors[J]. Iron & Steel, 2022, 57(12): 66-78. (杨光, 杨文, 张立峰. 铝镇静钢中夹杂物钙处理改性及其影响因素[J]. 钢铁, 2022, 57(12): 66-78.Yang Guang, Yang Wen, Zhang Lifeng, Modification of inclusion calcium in aluminum-killed steel and its influencing factors[J]. Iron & Steel, 2022, 57(12): 66-78. [5] Song Guangjie, Zhu Haoran, Ji Dengping, et al. Analysis of inclusions and carbides in 102Cr17Mo bearing steel billet[J]. Iron & Steel, 2023,58(8): 157-168. (宋光洁, 朱浩然, 季灯平, 等. 102Cr17Mo轴承钢铸坯夹杂物及碳化物解析[J]. 钢铁, 2023,58(8): 157-168.Song Guangjie, Zhu Haoran, Ji Dengping, et al. Analysis of inclusions and carbides in 102Cr17Mo bearing steel billet[J]. Iron & Steel, 2023,58(8): 157-168. [6] Guo Shuai, Zhu Hangyu, Han Yun, et al. Research on influence of inclusions on plasticity and toughness of steel[J]. Iron and Steel Research Journal. 2022(8): 713-726. (郭帅, 朱航宇, 韩赟, 等. 夹杂物对钢塑性和韧性的影响研究进展[J]. 钢铁研究学报, 2022(8): 713-726.Guo Shuai, Zhu Hangyu, Han Yun, et al. Research on influence of inclusions on plasticity and toughness of steel[J]. Iron and Steel Research Journal. 2022(8): 713-726. [7] Song Y, Zhang H, Ren L. A review of research on MnS inclusions in high-quality steel[J]. Engineering Reports, 2024,6(5):12892. doi: 10.1002/eng2.12892 [8] Yang Jian, Cai Wenjing. Effect of magnesium treatment on inclusions and HAZ structure and properties in steel[J]. Iron & Steel, 2021,56(7):13-24. (杨健, 蔡文菁. 镁处理对钢中夹杂物以及HAZ组织和性能的影响[J]. 钢铁, 2021,56(7):13-24.Yang Jian, Cai Wenjing. Effect of magnesium treatment on inclusions and HAZ structure and properties in steel[J]. Iron & Steel, 2021, 56(7): 13-24. [9] Xu Jianfei, Wang Kunpeng, Wang Ying, et al. Evolution law of inclusions in GCr15 bearing steel under different secondary oxidation degree[J]. Iron and Steel Research Journal, 2023, 35(12): 1496-1504. (徐建飞, 王昆鹏, 王郢, 等. GCr15轴承钢不同二次氧化程度下的夹杂物演变规律 [J]. 钢铁研究学报, 2023,35(12): 1496-1504.Xu Jianfei, Wang Kunpeng, Wang Ying, et al. Evolution law of inclusions in GCr15 bearing steel under different secondary oxidation degree[J]. Iron and Steel Research Journal, 2023, 35(12): 1496-1504. [10] Zhang Xuewei. Study on morphology analysis and control of MnS inclusions in heavy rail steel [D]. Beijing: University of Science and Technology Beijing, 2017. (张学伟. 重轨钢中MnS夹杂物形貌分析与控制研究 [D]. 北京: 北京科技大学, 2017.Zhang Xuewei. Study on morphology analysis and control of MnS inclusions in heavy rail steel [D]. Beijing: University of Science and Technology Beijing, 2017. [11] Liu Hongbo, Xie Rongyuan, Li Min, et al. Analysis of the evolution law of oxide inclusions in U75V heavy rail steel during the LF–RH refining process[J]. High Temperature Materials and Processes, 2023, 42(1). [12] Zhang Yuexin, Zhang Lifeng, Chu Yanping, et al. Transformation of inclusions in a complicated‐deoxidized heavy rail steels during heating[J]. Steel Research Rnternational, 2020, 91(9): 202000120. [13] Zhuo Chao. Study on removal and modification mechanism of inclusions in high speed heavy rail steel[D]. Beijing: University of Science and Technology Beijing, 2023. (卓超. 高速重轨钢中夹杂物去除及改性机理研究[D]. 北京: 北京科技大学, 2023.Zhuo Chao. Study on removal and modification mechanism of inclusions in high speed heavy rail steel[D]. Beijing: University of Science and Technology Beijing, 2023. [14] Chu Yanping, Chen Zhiyong, Liu Nan, et al. Formation and control of spinel inclusion in high speed heavy rail steel[J]. Iron & Steel, 2020,55(1):38-46, 55. (储焰平, 谌智勇, 刘南, 等. 高速重轨钢中尖晶石夹杂物的形成及控制[J]. 钢铁, 2020,55(1):38-46, 55.Chu Yanping, Chen Zhiyong, Liu Nan, et al. Formation and control of spinel inclusion in high speed heavy rail steel[J]. Iron & Steel, 2020, 55(1): 38-46, 55. [15] Fan Zhiming, Yang Jichun, Zhang Ying, et al. Effect of holding time on inclusions in U75V heavy rail steel[J]. Metal Heat Treatment, 2022,47(6):33-8. (樊志明, 杨吉春, 张滢, 等. 保温时间对U75V重轨钢中夹杂物的影响[J]. 金属热处理, 2022,47(6):33-38.Fan Zhiming, Yang Jichun, Zhang Ying, et al. Effect of holding time on inclusions in U75V heavy rail steel[J]. Metal Heat Treatment, 2022, 47(6): 33-8. [16] Liu Yue. Study on evolution mechanism of CASM inclusions in aluminum-free deoxidized heavy rail steel[D]. Shenyang: Northeastern University, 2018. (刘越. 无铝脱氧重轨钢中CASM类夹杂物演变机制研究[D]. 沈阳: 东北大学, 2018.Liu Yue. Study on evolution mechanism of CASM inclusions in aluminum-free deoxidized heavy rail steel[D]. Shenyang: Northeastern University, 2018. [17] Tian Qianren, Liu Nianfu, Shen Wei, et al. Morphological differences of MnS inclusions in medium-carbon steel with different manganese and sulfur contents[J]. Steel Research International, 2023,94(9):2300074. doi: 10.1002/srin.202300074 [18] Xie Xiaoyu, Gu Chao, Wang Min, et al. Control technology of manganese sulfide inclusion in medium and high sulfur steel[J]. Iron & Steel, 2021,56(12):52-61. (谢啸宇, 顾超, 王敏, 等. 中高硫钢中硫化锰夹杂物控制技术[J]. 钢铁, 2021,56(12):52-61.Xie Xiaoyu, Gu Chao, Wang Min, et al. Control technology of manganese sulfide inclusion in medium and high sulfur steel[J]. Iron & Steel, 2021, 56(12): 52-61. [19] Fang Mengting, Yuan Huazhi, Xie Xin, et al. Precipitation and growth of MnS inclusions in cast billet of heavy rail steel[J]. Iron & Steel, 2023,58(5):59-69. (房孟婷, 袁华志, 谢鑫, 等. 重轨钢铸坯中MnS夹杂物的析出与长大[J]. 钢铁, 2023,58(5):59-69.Fang Mengting, Yuan Huazhi, Xie Xin, et al. Precipitation and growth of MnS inclusions in cast billet of heavy rail steel[J]. Iron & Steel, 2023, 58(5): 59-69. [20] Shen Ping, Zhou Lei, Yang Qiankun, et al. Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel[J]. Metall Res Technol, 2020,117(6):615. doi: 10.1051/metal/2020066 [21] Lin Tengchang, Zhu Rong, Zeng Jiaqing, et al. Multi-scale structure of influencing factors for CaO-SiO2-Al2O3-MgO inclusion control[J]. Iron & Steel, 2015,50(6):21-25. (林腾昌, 朱荣, 曾加庆, 等. CaO-SiO2-Al2O3-MgO夹杂物控制影响因素的多尺度结构[J]. 钢铁, 2015,50(6):21-25.Lin Tengchang, Zhu Rong, Zeng Jiaqing, et al. Multi-scale structure of influencing factors for CaO-SiO2-Al2O3-MgO inclusion control[J]. Iron & Steel, 2015, 50(6): 21-25. [22] Chen Zhiyong, Wang Wenyi, Chu Yanping, et al. Analysis of inclusion evolution in U75V heavy rail steel of baotou steel[J]. Continuous Casting, 2020(5):57-61. (谌智勇, 王文义, 储焰平, 等. 包钢U75V重轨钢夹杂物演变规律分析[J]. 连铸, 2020(5):57-61.Chen Zhiyong, Wang Wenyi, Chu Yanping, et al. Analysis of inclusion evolution in U75V heavy rail steel of baotou steel[J]. Continuous Casting, 2020(5): 57-61. [23] Hou Zewang. Research on refining control of MnS inclusions in heavy rail steel[D]. Beijing: University of Science and Technology Beijing, 2022. (侯泽旺. 重轨钢MnS夹杂物细化控制研究[D]. 北京: 北京科技大学, 2022.Hou Zewang. Research on refining control of MnS inclusions in heavy rail steel[D]. Beijing: University of Science and Technology Beijing, 2022. [24] Li Xiangchuan. Analysis of inclusions evolution in CRRE steel [D]. Baotou: Inner Mongolia University of Science and Technology, 2022.