Modification of inclusions in Ni-Al maraging steels by rare earths
-
摘要: 钢中的非金属夹杂物对超高强度钢的塑韧性具有重要的影响。在Fe-Ni-Al系马氏体时效钢中加入稀土La、Ce元素,通过扫描电子显微镜及能谱仪(SEM-EDS)与电子探针(EPMA)分析结合FactSage热力学计算,研究了不同稀土元素对钢中非金属夹杂物的变质机理。结果表明,马氏体时效钢中加入稀土元素后形成了含稀土的RE-O-S和RE-Al-O,抑制了Al2S3的形成,对AlN夹杂物的形成没有明显影响,夹杂物经稀土改性后形状由条状和不规则的几何形状转变为接近球状。热力学计算结果表明,添加稀土元素后,钢液中可能形成的夹杂物热力学稳定性大致为REAlO3→Al2O3→稀土硫化物→AlN。加入稀土后,在高温熔融态下钢液中RE2O3和Al2O3就已稳定存在,并且随着冷却温度的降低,钢中的夹杂物按REAlO3→RE2O2S→RES的顺序逐渐析出,且稀土La和Ce的夹杂物演化路径基本相同。Abstract: Non-metallic inclusions in steel have an important influence on the ductility and toughness of ultra-high strength steels. In this paper, rare earth La and Ce elements were added to Fe-Ni-Al system martensitic aging steel, and the metamorphic mechanism of non-metallic inclusions in steel with different rare earth elements was investigated by scanning electron microscopy, energy spectrometry (SEM-EDS) and electron probe (EPMA) analyses combined with FactSage thermodynamic calculations. The results showed that the addition of rare earth elements to martensitic ageing steel resulted in the formation of rare earth-containing RE-O-S and RE-Al-O, which inhibited the formation of Al2S3 and had no significant effect on the formation of AlN inclusions, and the shape of the inclusions was transformed from a strip-like and irregular geometry to a near-spherical shape after the modification of the inclusions by rare earths. Thermodynamic calculations showed that after the addition of rare earth elements, the thermodynamic stability of inclusions in the steel might be formed roughly as REAlO3 → Al2O3 → rare earth sulfides → AlN. After the addition of rare earths, the RE2O3 and Al2O3 had been stable in the high-temperature molten state of the liquid steel, and with the lowering of the cooling temperature inclusions formed in the order of REAlO3 → RE2O2S → RES, and the inclusions of rare-earth La and Ce showed basically the same evolutionary path.
-
表 1 试验钢化学成分
Table 1. Chemical compositions of experimental steels
% 样本 C Ni Al Mo Nb B O N S La Ce Fe 1 # 0.039 19.157 2.342 3.886 0.657 0.017 0.0018 0.011 0.0033 Bal 2 # 0.049 19.735 2.338 3.133 0.646 0.016 0.0011 0.012 0.0021 0.019 Bal 3 # 0.046 19.109 2.641 3.262 0.675 0.018 0.0010 0.010 0.0020 0.018 Bal 表 2
1600 ℃时钢中各元素活度的相互作用系数Table 2. Interaction coefficients of the elements activities in steel at
1600 ℃元素 作用系数 C Al O S N B Ni Ce La O −0.450 −3.900 −0.200 −0.133 −2.600 −2.600 0.006 −0.570 −0.570 S 0.110 0.035 −0.270 −0.028 0.010 0.130 0.000 −0.231 −0.231 Al 0.091 0.045 −6.600 0.030 −0.058 −0.043 −0.043 N 0.130 −0.028 0.050 0.007 0.000 0.094 Ce −0.077 −2.250 −5.030 −39.8 −6.599 La −4.980 Table 3. Standardized Gibbs free energies of inclusions in steel liquids
化学方程式 ∆Gθ / (J·mol−1) [Al] + [N] = AlN(s) − 245900 + 107. 59T2[Al] + 3[O] = Al2O3(s) − 1203623 + 386.7T[Ce]+2[O]=CeO2(s) −852720 +249. 96T2[Ce]+3[O]= 2Ce2O3(s) − 714380 +179. 74T2[Ce]+2[O]+[S]=Ce2O2S(s) − 675700 +165. 5T2[Ce]+3[S]= Ce2S3(s) − 536420 +163. 86T3[Ce]+4[S]= Ce3S4(s) − 497670 +146. 3T[Ce]+[S]=CeS(s) − 422100 +120. 38T[Ce]+3[O]+[Al]=CeAlO3(s) − 1366460 +364. 3T2[La] + 3[O] = La2O3(s) − 1511520 + 379.2T2[La] + 2[O] + [S] = La2O2S(s) − 1425820 + 351.0T[La] + [S] = LaS(s) − 490000 + 171.0T[Al] +[La] + 3[O] = LaAlO3(s) − 1188616 + 310.6T -
[1] Gao Xueyun, Wang Haiyan, Li Jie, et al. Cerium-alloyed ultra-high strength maraging steel with good ductility: Experiments, first-principles calculations and phase-field simulations[J]. Materials Science and Engineering: A, 2022,846:143306. doi: 10.1016/j.msea.2022.143306 [2] Feng Jiawei, Niu Mengchao, Wang Wei, et al. Relationship between mechanical behavior and microstructure for an ultra-high strengthmaraging steel[J]. Chinese Journal of Materials Research, 2019,33(9):641. (冯家伟, 牛梦超, 王威, 等. 超高强度马氏体时效钢的力学行为与微观组织演化的关系[J]. 材料研究学报, 2019,33(9):641. doi: 10.11901/1005.3093.2018.707Feng Jiawei, Niu Mengchao, Wang Wei, et al. Relationship between mechanical behavior and microstructure for an ultra-high strengthmaraging steel[J]. Chinese Journal of Materials Research, 2019, 33(9): 641. doi: 10.11901/1005.3093.2018.707 [3] Pereloma E V, Shekhter A, Miller M K, et al. Ageing behaviour of an Fe–20Ni–1.8 Mn–1.6 Ti–0.59 Al (wt%) maraging alloy: clustering, precipitation and hardening[J]. Acta Materialia, 2004,52(19):5589. doi: 10.1016/j.actamat.2004.08.018 [4] Sha W, Malinov S. Titanium alloys: modelling of microstructure, properties and applications[M]. Elsevier, 2009. [5] Shin J H, Jeong J S, Lee J W. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel[J]. Materials Characterization, 2015,99:230. doi: 10.1016/j.matchar.2014.11.024 [6] Pereloma E V, Stohr R A, Miller M K, et al. Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography[J]. Metallurgical and Materials Transactions A, 2009,40:3069. doi: 10.1007/s11661-009-9993-z [7] Taillard R, Pineau A, Thomas B J. The precipitation of the intermetallic compound NiAl in Fe-19wt. % Cr alloys[J]. Materials Science and Engineering, 1982,54(2):209. doi: 10.1016/0025-5416(82)90115-X [8] Erlach S D, Leitner H, Bischof M, et al. Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel[J]. Materials Science and Engineering: A, 2006,429(1-2):96. doi: 10.1016/j.msea.2006.05.071 [9] Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition[J]. Acta Materialia, 2017,129:52. doi: 10.1016/j.actamat.2017.02.069 [10] Watanabe K, Goto H, Itagaki M. Flow injection analysis of phosphorus in steel using filter tube preconcentration[J]. ISIJ International, 2003,43(11):1767. doi: 10.2355/isijinternational.43.1767 [11] Wang X, Wu Z, Li B, et al. Inclusions modification by rare earth in steel and the resulting properties: A review[J]. Journal of Rare Earths, 2023,42(3):431-445. [12] Chen L, Ma X, Wang L. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr–11Ni austenitic heat-resistant stainless steel[J]. Materials & Design, 2011,32(4):2206. [13] Li Linlong, Yang Liqi, Xue Weihai, et al. Sliding friction and wear between rare earth modified GCR15 steel against cage materials[J]. Chinese Journal of Materials Research, 2023,37(6):408. (李林龙, 杨丽琪, 薛伟海, 等. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023,37(6):408.Li Linlong, Yang Liqi, Xue Weihai, et al. Sliding friction and wear between rare earth modified GCR15 steel against cage materials[J]. Chinese Journal of Materials Research, 2023, 37(6): 408. [14] Liu Chengjun, Jiang Maofa, Li Chunlong, et al. Mechanism and effect of rare earth on the impacting toughness of heavy rail steel[J]. The Chinese Journal of Process Engineering, 2006(1):135. (刘承军, 姜茂发, 李春龙, 等. 稀土对重轨钢冲击韧度的影响作用机制[J]. 过程工程学报, 2006(1):135. doi: 10.3321/j.issn:1009-606X.2006.01.031Liu Chengjun, Jiang Maofa, Li Chunlong, et al. Mechanism and effect of rare earth on the impacting toughness of heavy rail steel[J]. The Chinese Journal of Process Engineering, 2006(1): 135. doi: 10.3321/j.issn:1009-606X.2006.01.031 [15] Zhang Xiaofeng, Tang Jianping, Han Chunpeng, et al. Analysis on the role of rare earth in steel and the present situation of industrial production[J]. Chinese Rare Earths, 2021,42(4):117. (张晓峰, 唐建平, 韩春鹏, 等. 稀土在钢中作用及工业化生产现状浅析[J]. 稀土, 2021,42(4):117.Zhang Xiaofeng, Tang Jianping, Han Chunpeng, et al. Analysis on the role of rare earth in steel and the present situation of industrial production[J]. Chinese Rare Earths, 2021, 42(4): 117. [16] Wang Y, Li C R, Wang L Z, et al. Effect of yttrium treatment on alumina inclusions in high carbon steel[J]. Journal of Iron and Steel Research International, 2022,29(4):1. [17] Chu R S, Mu S K, Liu J, et al. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel[J]. IOP Conference Materials Science and Engineering Series, 2017, 242(1): 012065. [18] Liu H L, Liu C J, Jiang M F, et al. Effect of rare earths on impact toughness of a low-carbon steel[J]. Materials & Design, 2012,33:306. [19] Gao Jianbing, Chang Pengfei, Zhang Binbin, et al. Effect of Ce on inclusion modification in a new type super duplex stainless steel 2707HD[J]. Iron and Steel, 2018,53(9):37. (高建兵, 常朋飞, 张彬彬, 等. 铈对新型超级双相不锈钢2707HD夹杂物变性的影响[J]. 钢铁, 2018,53(9):37.Gao Jianbing, Chang Pengfei, Zhang Binbin, et al. Effect of Ce on inclusion modification in a new type super duplex stainless steel 2707HD[J]. Iron and Steel, 2018, 53(9): 37. [20] Su Cheng, Feng Guanghong, Zhi Jianguo, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel, 2021,33(12):1289. (宿成, 冯光宏, 智建国, 等. 稀土对耐磨板NM400低温冲击韧性的影响[J]. 钢铁研究学报, 2021,33(12):1289.Su Cheng, Feng Guanghong, Zhi Jianguo, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel, 2021, 33(12): 1289. [21] Lü Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93. doi: 10.7513/j.issn.1004-7638.2019.03.017Lü Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 93. doi: 10.7513/j.issn.1004-7638.2019.03.017 [22] Li Wenchao. Thermodynamic of rare earth inclusions generation in steel[J]. Iron and Steel, 1986(3):7. (李文超. 钢中稀土夹杂物生成的热力学规律[J]. 钢铁, 1986(3):7.Li Wenchao. Thermodynamic of rare earth inclusions generation in steel[J]. Iron and Steel, 1986(3): 7. [23] Wang H P, Yu P, Jiang S L, et al. Evolution of inclusions in steelmaking process of rare earth steels containing arsenic with alumina crucibles[J]. Metals, 2020,10(2):275. doi: 10.3390/met10020275 [24] Liu X, Yang J C. Effect of Ce on inclusions and impact property of 2Cr13 stainless steel[J]. Journal of Iron and Steel Research, 2010,17(12):59. doi: 10.1016/S1006-706X(10)60198-7 [25] Champi A, Marques F C. Thermal expansion coefficient, mechanical and structural properties of hydrogenated carbon nitrides[J]. Diamond and Related Materials, 2012,25:124. doi: 10.1016/j.diamond.2012.02.021