留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单流板坯中间包控流装置优化的数理模拟及应用

黄磊 谢旭琦 张华 李宇翔 黄在京 黄柯杰 方庆

黄磊, 谢旭琦, 张华, 李宇翔, 黄在京, 黄柯杰, 方庆. 单流板坯中间包控流装置优化的数理模拟及应用[J]. 钢铁钒钛, 2024, 45(6): 133-141. doi: 10.7513/j.issn.1004-7638.2024.06.018
引用本文: 黄磊, 谢旭琦, 张华, 李宇翔, 黄在京, 黄柯杰, 方庆. 单流板坯中间包控流装置优化的数理模拟及应用[J]. 钢铁钒钛, 2024, 45(6): 133-141. doi: 10.7513/j.issn.1004-7638.2024.06.018
Huang Lei, Xie Xuqi, Zhang Hua, Li Yuxiang, Huang Zaijing, Huang Kejie, Fang Qing. Physical-numerical simulation and application of optimization of flow control device in a single-stand slab tundish[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 133-141. doi: 10.7513/j.issn.1004-7638.2024.06.018
Citation: Huang Lei, Xie Xuqi, Zhang Hua, Li Yuxiang, Huang Zaijing, Huang Kejie, Fang Qing. Physical-numerical simulation and application of optimization of flow control device in a single-stand slab tundish[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 133-141. doi: 10.7513/j.issn.1004-7638.2024.06.018

单流板坯中间包控流装置优化的数理模拟及应用

doi: 10.7513/j.issn.1004-7638.2024.06.018
基金项目: 国家自然科学基金资助项目(52004191);中国博士后科学基金资助项目(2022M711120);湖北省教育厅科学技术研究项目(B2022020)。
详细信息
    作者简介:

    黄磊:黄 磊,1985年出生,男,湖北襄阳人,硕士生,高级工程师,主要从事产品开发质量控制相关工作,E-mail:Hleybgxc@foxmail.com

    通讯作者:

    张 华,1978年出生,男,湖北枣阳人,博士,教授,主要研究方向:钢铁冶金,E-mail:huazhang@wust.edu.cn

  • 中图分类号: TF777

Physical-numerical simulation and application of optimization of flow control device in a single-stand slab tundish

  • 摘要: 合理的控流装置结构和布局是提升中间包内钢液洁净度的关键。采用数值模拟与水力学模拟相结合的方法对某厂单流板坯中间包控流装置不同组合方式及位置的钢液流动行为、RTD曲线及夹杂物去除率进行分析,结果表明,在坝墙间距不变情况下,挡墙往长水口侧移动适当距离会延长钢液平均停留时间9.9 ~17.9 s、死区体积比例减小0.45~0.85个百分点、中间包低温区域减少,净化钢液的能力有所提升;在坝墙间距改变的情况下,坝墙间距过大可能会导致中间包浇注区钢液的紊乱,钢液平均停留时间延长不明显,死区体积比例反而增大0.33个百分点,中间包低温区域增大,夹杂物总去除率上升0.18个百分点。因此,坝墙间距为473.5 mm及挡墙与长水口距离为720 mm是较为理想的控流装置组合方式。采用优化方案后,中间包内钢液洁净度得到有效提升。
  • 图  1  中间包三维结构及网格

    Figure  1.  Three-dimensional structure and mesh of the tundish

    图  2  方案A2不同时刻中间包内水模试验和数值模拟计算的流动状态对比

    Figure  2.  Comparison of flow pattern between experiment and simulation under Scheme A2

    (a)28 s;(b)95 s;(c)141 s;(d)360 s

    图  3  原型中间包和方案B2水模试验和数值模拟RTD曲线对比

    (A) 原型中间包;(B) 方案B2

    Figure  3.  Comparison of RTD curves between experiment and simulation under scheme B2 and prototype tundish

    图  4  各方案中间包长水口中心纵截面流线

    (a)原型;(b)A1;(c)A2;(d)A3;(e)B1;(f)B2

    Figure  4.  Streamline field in the center longitudinal section of ladle shroud in tundish under different schemes

    图  5  各方案中间包冲击区自由液面速度云图

    (a)原型;(b)A1;(c)A2;(d)A3;(e)B1;(f)B2

    Figure  5.  Free surface velocity nephogram of tundish impact zone under different schemes

    图  6  各控流方案中间包RTD曲线

    (a)方案原型~A3;(b)方案原型~B2

    Figure  6.  RTD curves of tundish under different schemes

    图  7  各方案中间包长水口中心纵截面温度云图

    (a)原型;(b)A1;(c)A2;(d)A3;(e)B1;(f)B2

    Figure  7.  Temperature contours in center longitudinal section of ladle shroud in tundish under different schemes

    图  8  各方案中间包内夹杂物去除率

    Figure  8.  Inclusion removal rate in the tundish under different schemes

    表  1  中间包数值模拟计算所用主要工艺参数

    Table  1.   Main industrial parameters of tundish applied in the numerical simulations

    原中间包
    工作吨
    位/t
    原中间包
    工作液
    位/mm
    长水口
    浸入
    深度/mm
    铸坯断面
    尺寸/
    (mm×mm)
    典型拉坯
    速度/
    (m$ \cdot $min−1)
    长水口
    内径/mm
    浸入式水口
    内径/mm
    夹杂物
    密度/
    (kg$ \cdot $m−3)
    钢液物理
    密度/
    (kg·m−3)
    钢的摩尔
    质量/
    (g·mol−1)
    钢液黏度/
    (Pa·s)
    22 994 400 1248×200 1.1 75 62 3500 7000 55.86 0.0062
    下载: 导出CSV

    表  2  单流板坯中间包数值模拟计算方案

    Table  2.   Calculation scheme of single-strand tundish applied in the numerical simulations

    方案 编号 参数
    挡墙距
    长水口/mm
    坝墙中心
    间距/mm
    挡坝距浸入
    式水口/mm
    原型中间包 920 473.5 679
    坝墙间距不变 A1 770 473.5 679
    A2 720 473.5 679
    A3 670 473.5 679
    坝墙间距改变 B1 720 673.5 679
    B2 920 673.5 479
    下载: 导出CSV

    表  3  中间包模型和原型参数比例

    Table  3.   Tundish model and prototype parameter ratio

    线性比 速度比 流量比 平均停留时间比
    公式 $ { \lambda } $ $ {{v}}_{\text{m}}\text{=}\sqrt{{ \lambda }}\text{∙}{{v}}_{\text{p}} $ $ {{Q}}_{\text{m}}\text{=}{{ \lambda }}^{\tfrac{\text{5}}{\text{2}}}\text{∙}{{Q}}_{\text{p}} $ $ {\overline{{t}}}_{\text{m}}\text{=}\dfrac{{{L}}_{\text{m}}{/}{{V}}_{\text{m}}}{{{L}}_{\text{p}}{/}{{V}}_{\text{p}}} $
    1/2 0.707 0.17678 0.707
    注:$ \lambda $为线性比;下标p、m分别代表原型和模型;vL分别为流速、特征长度。
    下载: 导出CSV

    表  4  原型中间包和方案B2水模试验和数值模拟平均停留时间误差对比

    Table  4.   Comparison of average residence time between experiment and simulation under scheme B2 and prototype tundish

    方案水模试验值/s数值模拟/s相对误差/%
    原型649.5686.65.40
    B2649.5686.85.43
    下载: 导出CSV

    表  5  各控流方案中间包RTD曲线分析结果

    Table  5.   Analysis of RTD curves in the tundish under different schemes

    方案 $ {t}_{\mathrm{r}} $/s $ {t}_{\mathrm{p}} $/s $ \bar{t}/\mathrm{s} $ Vp/% Vd/% Vm/%
    原型 171.0 421.0 686.6 43.11 7.68 49.21
    A1 177.5 406.5 696.5 41.92 7.23 50.85
    A2 179.0 414.5 704.5 42.12 6.83 51.05
    A3 197.0 376.5 696.5 41.16 7.46 51.38
    B1 167.0 391 687.5 40.58 7.57 51.85
    B2 156.5 405.5 686.8 40.92 8.01 51.07
    下载: 导出CSV

    表  6  中间包优化前后夹杂物评级对比

    Table  6.   Comparison of inclusions ranking before and after tundish optimization

    夹杂物评级/级优化前占比/%优化后占比/%
    B类D类B类D类
    0.5~1.026.4497.9532.42100
    1.5~2.570.332.0566.590
    >2.53.2300.990
    下载: 导出CSV
  • [1] Pan Hongwei, Wang Leichuan, Guan Shunkuan, et al. Inclusions movement behavior in tundish after ladle changing[J]. Iron Steel Vanadium Titanium, 2017,38(1):113-117. (潘宏伟, 王雷川, 关顺宽, 等. 换包后中间包内夹杂物运动行为[J]. 钢铁钒钛, 2017,38(1):113-117.

    Pan Hongwei, Wang Leichuan, Guan Shunkuan, et al. Inclusions movement behavior in tundish after ladle changing[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 113-117.
    [2] Gao Wenxing, Yuan Jibai, He Junfeng, et al. Optimization of flow control device on twin channel induction heating tundish by simulation[J]. Iron Steel Vanadium Titanium, 2023,44(3):144-151. (高文星, 袁己百, 赫俊峰, 等. 双通道感应加热中间包控流装置模拟优化[J]. 钢铁钒钛, 2023,44(3):144-151.

    Gao Wenxing, Yuan Jibai, He Junfeng, et al. Optimization of flow control device on twin channel induction heating tundish by simulation[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 144-151.
    [3] Sun Hua, Sun Yanhui, Huang Bo, et al. Simulation optimization research of tundish under different pull speeds[J]. Iron Steel Vanadium Titanium, 2017,38(3):118-123. (孙华, 孙彦辉, 黄博, 等. 三流非对称中间包流场水模拟研究[J]. 钢铁钒钛, 2017,38(3):118-123.

    Sun Hua, Sun Yanhui, Huang Bo, et al. Simulation optimization research of tundish under different pull speeds[J]. Iron Steel Vanadium Titanium, 2017, 38(3): 118-123.
    [4] Sahai Y. Tundish technology for casting clean steel: A review[J]. Metallurgical and Materials Transactions B, 2016,47(4):2095. doi: 10.1007/s11663-016-0648-3
    [5] Huang Jun, Yuan Zhigang, Shi Shaoyuan, et al. Flow characteristics for two-strand tundish in continuous slab casting using PIV[J]. Metals, 2019,9(2):239. doi: 10.3390/met9020239
    [6] Ni P, Jonsson I T L, Ersson M, et al. Application of a swirling flow producer in a conventional tundish during continuous casting of steel[J]. ISIJ International, 2017,57(12):2175. doi: 10.2355/isijinternational.ISIJINT-2017-377
    [7] Wang Jiahui, Zhang Hua, Fang Qing, et al. Physical simulation on optimization of flow field in a tundish by top swirling turbulence inhibitor[J]. Iron and Steel, 2023,58(2):72. (王家辉, 张华, 方庆, 等. 顶旋型湍流抑制器优化中间包流场的物理模拟[J]. 钢铁, 2023,58(2):72.

    Wang Jiahui, Zhang Hua, Fang Qing, et al. Physical simulation on optimization of flow field in a tundish by top swirling turbulence inhibitor[J]. Iron and Steel, 2023, 58(2): 72.
    [8] Wang Jiahui, Fang Qing, Zhu Shuang, et al. Effect of top-swirling turbulence inhibitor on flow behaviors of a single-strand slab casting tundish[J]. Journal of Iron and Steel Research, 2021,33(7):575. (王家辉, 方庆, 朱爽, 等. 顶旋型湍流抑制器对单流板坯中间包内湍流行为的影响[J]. 钢铁研究学报, 2021,33(7):575.

    Wang Jiahui, Fang Qing, Zhu Shuang, et al. Effect of top-swirling turbulence inhibitor on flow behaviors of a single-strand slab casting tundish[J]. Journal of Iron and Steel Research, 2021, 33(7): 575.
    [9] Wu Jinqiang, Yang Shufeng, Li Jingshe, et al. Physical simulation of structure optimization of three-strand tundish[J]. China Metallurgy, 2019,29(11):39. (吴金强, 杨树峰, 李京社, 等. 三流中间包结构优化物理模拟[J]. 中国冶金, 2019,29(11):39.

    Wu Jinqiang, Yang Shufeng, Li Jingshe, et al. Physical simulation of structure optimization of three-strand tundish[J]. China Metallurgy, 2019, 29(11): 39.
    [10] Xue Weifeng, Wen Guanghua, Tang Ping, et al. Physical simulation of structure optimization of three-strand tundish[J]. Special Steel, 2005,26(3):19-21. (薛伟锋, 文光华, 唐萍, 等. 薄板坯连铸中间包控流装置的数理模拟[J]. 特殊钢, 2005,26(3):19-21. doi: 10.3969/j.issn.1003-8620.2005.03.006

    Xue Weifeng, Wen Guanghua, Tang Ping, et al. Physical simulation of structure optimization of three-strand tundish[J]. Special Steel, 2005, 26(3): 19-21. doi: 10.3969/j.issn.1003-8620.2005.03.006
    [11] Chen Dengfu, Zuo Xiangjun, Zheng Hui, et al. Physical and mathematical study on flow control device of tundish for 5-strand billet casting at Chongqing steel[J]. Special Steel, 2007,28(1):1-3. (陈登福, 佐祥均, 郑辉, 等. 重钢5流方坯连铸中间包控流装置的数理研究[J]. 特殊钢, 2007,28(1):1-3. doi: 10.3969/j.issn.1003-8620.2007.01.001

    Chen Dengfu, Zuo Xiangjun, Zheng Hui, et al. Physical and mathematical study on flow control device of tundish for 5-strand billet casting at Chongqing steel[J]. Special Steel, 2007, 28(1): 1-3. doi: 10.3969/j.issn.1003-8620.2007.01.001
    [12] Quan Qi, Zhang Zhixiao, Qu Tianpeng, et al. Physical and numerical investigation on fluid flow and inclusion removal behavior in a single-strand tundish[J]. Journal of Iron and Steel Research International, 2023,30(6):1182-1198. doi: 10.1007/s42243-022-00884-3
    [13] Xu Rui, Ling Haitao, Wang Haijun, et al. Investigation on the effects of ladle change operation and tundish cover powder on steel cleanliness in a continuous casting tundish[J]. Steel Research International, 2021,92(10):2100072. doi: 10.1002/srin.202100072
    [14] Chatterjee S, Li Donghui, Chattopadhyay K. Modeling of liquid steel/slag/argon gas multiphase flow during tundish open eye formation in a two-strand tundish[J]. Metallurgical and Materials Transactions B, 2018,49(2):756. doi: 10.1007/s11663-018-1177-z
    [15] Zhao Mengjing, Wang Yong, Yang Shufeng, et al. Flow field and temperature field in a four-strand tundish heated by plasma[J]. Metals, 2021,11(5):722. doi: 10.3390/met11050722
    [16] Chatterjee Saikat, Li Donghui, Leung Jackie, et al. Investigation of eccentric open eye formation in a slab caster tundish[J]. Metallurgical and Materials Transactions B, 2017,48(2):1035. doi: 10.1007/s11663-016-0899-z
    [17] Xie Xuqi, Fang Qing, Wang Jiahui, et al. Numerical and physical simulation on enhancing steel cleanliness by increasing height of two-strand slab tundish[J]. China Metallurgy, 2023,33(6):95. (谢旭琦, 方庆, 王家辉, 等. 双流板坯中间包加高提升钢液洁净度的数理模拟[J]. 中国冶金, 2023,33(6):95.

    Xie Xuqi, Fang Qing, Wang Jiahui, et al. Numerical and physical simulation on enhancing steel cleanliness by increasing height of two-strand slab tundish[J]. China Metallurgy, 2023, 33(6): 95.
    [18] Zhao Peng, Zhang Hua, Fang Qing, et al. Numerical study on strand-blocking operation of a six-strand square billet tundish[J]. Journal of Iron and Steel Research, 2022,34(5):438. (赵鹏, 张华, 方庆, 等. 六流小方坯中间包堵流浇注的数值模拟研究[J]. 钢铁研究学报, 2022,34(5):438.

    Zhao Peng, Zhang Hua, Fang Qing, et al. Numerical study on strand-blocking operation of a six-strand square billet tundish[J]. Journal of Iron and Steel Research, 2022, 34(5): 438.
    [19] Zhang Hua, Wang Jiahui, Fang Qing, et al. Effect of top-swirling turbulence inhibitor on multiphase flow in a single‐strand tundish during transient casting[J]. Steel Research International, 2022,93(5):2100536. doi: 10.1002/srin.202100536
    [20] Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021,56(6):48. (陈希青, 肖红, 王璞, 等. 双通道感应加热中间包的三维磁流热耦合模型[J]. 钢铁, 2021,56(6):48.

    Chen Xiqing, Xiao Hong, Wang Pu, et al. Three-dimensional magneto-hydrothermal coupling model of twin-channel tundish with induction heating[J]. Iron and Steel, 2021, 56(6): 48.
    [21] Li Yihong, Bao Yanping, Zhao Lihua, et al. Effect of diversion hole on flow trajectory of steel in multi-strand tundish[J]. Iron and Steel, 2014,49(6):37. (李怡宏, 包燕平, 赵立华, 等. 多流中间包导流孔对钢液流动轨迹的影响[J]. 钢铁, 2014,49(6):37.

    Li Yihong, Bao Yanping, Zhao Lihua, et al. Effect of diversion hole on flow trajectory of steel in multi-strand tundish[J]. Iron and Steel, 2014, 49(6): 37.
    [22] Ding Changyou, Lei Hong, Chen Shifu, et al. Challenge of residence time distribution curve in tundish for continuous casting of steel[J]. Steel Research International, 2022,93(10):2200187. doi: 10.1002/srin.202200187
    [23] Zhang Hua, Fang Qing, Liu Chao, et al. Effect of flow control devices on grade change process in a five-strand tundish[J]. Metallurgical Research & Technology, 2022,119(3):317.
    [24] Fang Qing, Zhang Hua, Luo Ronghua, et al. Optimization of flow, heat transfer and inclusion removal behaviors in an odd multistrand bloom casting tundish[J]. Journal of Materials Research and Technology, 2020,9(1):347. doi: 10.1016/j.jmrt.2019.10.064
    [25] Li Quanhui, Qin Bangming, Zhang Jiangshan, et al. Design improvement of four-strand continuous-casting tundish using physical and numerical simulation[J]. Materials, 2023,16(2):849. doi: 10.3390/ma16020849
    [26] Ruan Yanwei, Yao Yu, Shen Shiyi, et al. Physical and mathematical simulation of surface-free vortex formation and vortex prevention design during the end of casting in tundish[J]. Steel Research International, 2020,91(6):1900616. doi: 10.1002/srin.201900616
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回